No they won’t be.Consider the linear combination (1)(u – v) + (1) (v – w) + (-1)(u – w).This will add to 0. But the coefficients aren’t all 0.Therefore, those vectors aren’t linearly independent.
You can try an example of this with (1, 0, 0), (0, 1, 0), and (0, 0, 1), the usual basis vectors of R3.
That method relied on spotting the solution immediately.If you couldn’t see that, then there’s another approach to the problem.
We know that u, v, w are linearly independent vectors.So if au + bv + cw = 0, then a, b, and c are all 0 by definition.
Suppose we wanted to ask whether u – v, v – w, and u – w are linearly independent.Then we’d like to see if there are non-zero coefficients in the linear combinationd(u – v) + e(v – w) + f(u – w) = 0, where d, e, and f are scalars.
Distributing, we get du – dv + ev – ew + fu – fw = 0.Then regrouping by vector: (d + f)u + (-d +e)v + (-e – f)w = 0.
But now we have a linear combo of u, v, and w vectors.Therefore, all the coefficients must be 0.So d + f = 0, -d + e = 0, and –e – f = 0. It turns out that there’s a free variable in this solution.Say you let d be the free variable.Then we see f = -d and e = d.
Then any solution of the form (d, e, f) = (d, d, -d) will make (d + f)u + (-d +e)v + (-e – f)w = 0 a true statement.
Let d = 1 and you get our original solution. You can let d = 2, 3, or anything if you want.
X=22.5
I got that by writing the fraction 12/15 is equal to 18/x. To get 12 to 18 u have to multiply 12 by 1.5, so I do the same to 15 to find what x would be
Problem 1) Line n is the line of symmetry (not line o) because we can fold the lower half to match up with the upper half. The folding line is over line n.
Problem 2) I agree. Nice work on getting the correct answer. The folding line is a vertical line through the center
Problem 3) It's hard to say for sure, but I think the top left corner is NOT reflective over any line of symmetry no matter how you rotate it. So I would uncheck that box. I agree with your other choices though. Great job with those.