Use the given values in the compound interest formula to solve for time, n.
A is the final amount of money, $2800
P is the initial or starting amount $1900
i is the interest rate as a decimal 0.025
n is time in years since it annual.
2800 = 1900(1 + 0.025)^n
2800 = 1900(1.025)^n
2800/1900 = (1.025)^n
28/19 = (1.025)^n
take the natural log of both sides to solve for exponent.
ln(28/19) = ln(1.025^n)
power rule of logarithmic moves exponent
ln(28/19) = n*ln(1.025)
ln(28/19) / ln(1.025) = n
put into a calculator
15.7 years = n
Answer:
Step-by-step explanation:
Answer:
An arithmetic sequence is a sequence of numbers in which the difference between the consecutive terms is constant.
Y+7
Y is the variable and 7 is the constant.