Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
Answer:
option C is the correct answer my friend
Answer:
<u><em>The Father is currently 47 and the Son is 7</em></u>
Step-by-step explanation:
Let F and S be the present ages of Father and Son, respectively.
We are told that <u>(F-2) = 9(S-2)</u> [2 years ago, father age was nine times the son age]
We also learn that <u>(F+3) = 5(S+3)</u> [3 years later it will be 5 times only]
Take the first expression and isolate one of the variables (S or F). I'll isolate F:
(F-2) = 9(S-2)
F = 9S - 16
Now use this in the second expression:
(F+3) = 5(S+3)
((9S-16)+3) = 5(S+3)
9S-13 = 5S+15
4S = 28
S = 7
Since F = 9S-16,
F = 9*(7)-16
F = 47
<u><em>Father is 47 and Son is 7</em></u>
CHECK:
Was the father 9 times the age of his son 2 years ago?
Father would have been 45 and son 5. Yes, 9*5 = 45
In 3 years will he be 5 times older than his son? Yes, Father would be 50 and son would be 10. 5*(10) = 50
Answer: 51.84$
Step-by-step explanation: Because 8% of 48 is 3.84$