Answer:
x=18, y= 6
Step-by-step explanation:
if x+y=24
x= 24- y
in second case
x= 3y
24_ y = 3y
24=4y
y= 6
hence x = 24 _6 = 18
Answer: sec (75) or csc (15)
Step-by-step explanation:
255 is in the 3rd quadrant where the secant is. Here, the tangent and cotangent is positive.
Reference angle for 255 is,
255 - 180 = 75 degrees.
Therefore, sec (255) = sec (75)
= csc (90 - 75) = csc (15)
For domain 2x sqrt(2+x)>0
x>0,2+x>0,x>-2 combining
we get x>2
f'(x)=[1/{2x sqrt(2+x)}][{2x/(2 sqrt(2+x))}+2 sqrt(2+x)]
Sec^2 x - 1 = tan^2x
Proof:
Sec^2x = 1+ tan^2x
1/cos^2x = 1 + sin^2x/cos^2x
<span>1/cos^2x - sin^2x/cos^2x = 1
</span>Using common denominator:
(1-sin^2x)/cos^2x = 1
sin^2x + cos^2 x = 1
cos^2 x = 1 - sin^2x
Substituting :
cos^2x/<span>cos^2x = 1
</span>1 = 1
Left hand side = right hand side