Answer: 8
Step-by-step explanation:
we know the area of a circle is
A=π r²
50.24= 3.14* r²
50.24/3.14=r^2
16=r^2
r=sqrt 16=4
diameter is 2r=2*4=8
We know that
Perimeter=2AB+2AD=34 in-----> AB+AD=17-----> AB=17-AD-----> equation 1
MA=MD
MA²=AB²+(AD/2)²
for the triangle AMD
AD²=[MA²+MD²]----> AD²=2*[MA²]----> AD²=2*[AB²+(AD/2)²]---> equation 2
I substitute 1 in 2
AD²=2*[(17-AD)²+(AD/2)²]----> AD²=2*[289-34AD+AD²+0.25AD²]
AD²=578-68AD+2.50AD²--------> 1.50AD²-68AD+578
1.50AD²-68AD+578=0
using a graph tool to solve the quadratic equation
see the attached figure
AD1=11.33 in
AD2=34 in----------is not solution because (AB+AD=17)
Solution is AD=11.33 in
AB=17-11.33--------> 17-11.33-----> AB=5.67 in
the answer is
AD=11.33 in
<span>AB=5.67 in</span>
12 pints of soapy water.
8 pints = 1 gallon.
1 pint = 1/8 gallon
12 pints = 12*(1/8)
12 pints = (12/8) gallons
= 3/2 = 1.5 gallons.
Since the bucket is 5 gallon capacity, It can hold:
5 - 1.5
= 3.5 gallons more.
But 1 gallon is = 4 quarts.
3.5 gallons = 3.5 * 4 = 14 quarts more.
Answer:
For f(x) = √(2·x + 2) - √(x + 18), at f(x) = -1 the possible x-values includes;
-0.757, -17.5
Step-by-step explanation:
Given that the function is f(x) = √(2·x + 2) - √(x + 18)
The value of 'x' when f(x) = -1, is given as follows;
-1 = √(2·x + 2) - √(x + 18)
-1² = (√(2·x + 2) - √(x + 18))² = 3·x + 20 - 2·√(2·x + 2)×√(x + 18)
1 = 3·x + 20 - 2·√(2·x + 2)×√(x + 18)
2·√(2·x + 2)×√(x + 18) = 3·x + 20 - 1 = 3·x + 19
2·x² + 38·x + 36 = (3·x + 19)/2
2·x² + 38·x + 36 - (3·x + 19)/2 = 0
4·x² + 73·x + 53 = 0
From which we get;
x = (-73 ± √(73² - 4 × 4 × 53))/(2 × 4)
x ≈ -0.757, and x ≈ -17.5
Answer:
D. 1080°
Step-by-step explanation:
Sum=(n-2)x180°
(8-2)x180°
6x180°
1080°
Hope it helps ❤