Prove that if m + n and n + p are even integers, where m, n, and p are integers, then m + p is even.
m=2k-n, p=2l-n
Let m+n and n+p be even integers, thus m+n=2k and n+p=2l by definition of even
m+p= 2k-n + 2l-n substitution
= 2k+2l-2n
=2 (k+l-n)
=2x, where x=k+l-n ∈Z (integers)
Hence, m+p is even by direct proof.
The largest number is 345
Answer:
No
Step-by-step explanation:
Complex answer: For a point to be in quadrant II, it must have a negative x value and a positive y value.
Simple answer: The 1 would have to be negative to be in quadrant II, and it isn't
Answer:
3%
Step-by-step explanation:
P% = 15/500
P = 0.03
P% = 0.03 * 100 = 3%
Answer:
96
Step-by-step explanation: