In some early mornings , dew drops can be found on grass or a car parked outside, but not on other materials such as the sidewalk because the night -time temperature on grass and the car went below the dew point, but the temperature of the concrete did not drop enough to reach the dew point level
Dew can be formed on any object when the temperature of the object drop. When this happen, the object will be cool which will eventually cool the surrounding air around the object.
Dew drops is as a result of condensation in the air. When the cool air causes the air vapor to convert to liquid. The dew will form when the temperature of the object balances with the dew point in the surrounding environment.
In some early mornings , dew drops can be found on grass or a car parked outside, but not on other materials such as the sidewalk because the night -time temperature on grass and the car went below the dew point, but the temperature of the concrete did not drop enough to reach the dew point level
Therefore the correct option is therefore A
Learn more here : brainly.com/question/13834972
Answer:
The buoyant force experienced by a body is equal to product of unit weight of liguid in which the the objevt is immersed and the volume of liquid replaced by the object.
In the given scenario, bothe the spheres have equal volume and are fully submerged in water. Therefore, the buoyant force experienced by both the spheres will be equal.
Angular momentum is the measure of the amount of rotation of the body. It is the product of the moment of inertia and the angular velocity. The moment of inertia has the equation I=mr^2, where m is the mass and r is the radius of the circle. In this case, the radius is 0.6 m. Then, I = 2kg * (0.6)^2 = 0.72 kg-m2/s2.
The angular velocity on the other hand is the product of linear velocity and the radius. The equation is ω = rv, where v is the linear velocity. Therefore, ω = 0.6*1.1 = 0.66 rad/s
Therefore, the angular momentum is
= 0.72 kg-m2/s2*0.66 rad/s
= 0.48 kg-m^2/s