Answer:
False
Explanation:
A white dwarf star that is easy to locate and see with small telescopes.
Answer:
Explanation:
Given
length of rope 
velocity while running 
when the person jumps off the bank and hang on the rope then we can treat the person as pendulum with Time period T which is given by




Greatest Possible distance will be covered when person reaches the other extreme end of assumed pendulum (velocity=zero)
therefore he must hang on for 0.5 T time

Answer:
the number of neutrons and protons in an atom
To develop this problem we will apply the considerations made through the concept of Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. At first the source is moving towards the observer. Than the perceived frequency at first

Where F is the actual frequency and v is the velocity of the ambulance
Now the source is moving away from the observer.

We are also so told the perceived frequency decreases by 11.9%



Equating,





Solving for V,

Answer:
x = 333.33 [m]
Explanation:
To solve this problem we must use the following kinematics equation.

where:
Vf = final velocity = 0
Vi = initial velocity = 20 [m/s]
a = desacceleration = 0.6 [m/s^2]
x = distance [m]
Note: the final speed is zero as the body finishes its movement.
Now replacing:
0 = (20)^2 - (2*0.6*x)
1.2*x = 400
x = 333.33 [m]