<u>Answer;</u>
<em>D. The object’s weight changes, but its mass stays the same.</em>
<u>Explanation;</u>
- Mass is the amount of matter in a object, which is measured in kilograms. Mass of an object is measured using a beam balance. It is important to note that the mass of an object or a body remains constant, and does not vary from one place to another. For instance the mass of a person on the moon will be the same as when the person is on the earth surface.
- Weight on the other hand is the measurement of gravitational pull of an object. weight is measured using a spring balance and measured in Newtons. Weight varies from one place to another depending on the gravitational pull of a given surface.
Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:

Theres: the vacuole, nucleus, rough endoplamid reticulum, smooth endoplasmic reticulum, cell memebrane, cell wall, chloroplast, mitochondria, golgi apperatus, lysosomes, and ribosomes
Answer:
The work done by the child as the tricycle travels down the incline is 416.96 J
Explanation:
Given;
initial velocity of the child,
= 1.4 m/s
final velocity of the child,
= 6.5 m/s
initial height of the inclined plane, h = 2.25 m
length of the inclined plane, L = 12.4 m
total mass, m = 48 kg
frictional force,
= 41 N
The work done by the child is calculated as;

Therefore, the work done by the child as the tricycle travels down the incline is 416.96 J
Answer:
Explanation:
mass of the ball = 146 g = 146 / 1000 = 0.146 kg
initial speed of the ball = 40.6 m/s
final speed of the ball = - 45.1 m/s
time of impact = 1.05 ms = 1.05 / 1000 = 0.00105 s
impulse, Ft = change in momentum = mv - mu = m (v-u)
F = m (v - u) / t = 0.146 kg ( -45.1 -40.6) / 0.00105 s = -11916.4 N