Answer:
B. 1200 J
Explanation:
Hello.
In this case, given the powers, we compute the energy transferred as shown below:

Therefore, answer is B. 1200 J
.
Best regards.
Answer:
2.80 MJ
Explanation:
(a) We want to calculate the energy U of the battery, where its voltage is E = 13.0V and the supplied current is I = 60 A. We can neglect the internal resistance, so the terminal voltage equals the emf of the battery V = 13.0V. The quantity of delivered energy is given by the rate at which energy is delivered to it in a certain time t. We could obtain the rate at which energy is transferred by using equation , where the rate represents the power P = IV. Therefore, the energy produced is given by
U = P*t (P = IV)
U = I*V*t (1)
Now we can plug our values for I, V and t into equation (1) to get the energy produced in time t = 1 h = 3600 s
U = I*V*t = (60 A)(13 V)(3600s) = 2.80 MJ
To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is

Through this equation we can find the mass of the Planet in function of the distance, therefore



The orbital velocity is





The time period of revolution is,




Therefore the orbital period of the satellite is closes to 1 hour and 12 min
<span>a. equal to zero.
</span>because the forces are balance (equal magnitudes, opposite directions)