Using the greatest common factor, it is found that the greatest dimensions each tile can have is of 3 feet.
---------------------------
- The widths of the walls are of <u>27 feet, 18 feet and 30 feet.</u>
- <u>The tiles must fit the width of each wall</u>, thus, the greatest dimension they can have is the greatest common factor of 27, 18 and 30.
To find their greatest common factor, these numbers must be factored into prime factors simultaneously, that is, only being divided by numbers of which all three are divisible, thus:
27 - 18 - 30|3
9 - 6 - 10
No numbers by which all of 9, 6 and 10 are divisible, thus, gcf(27,18,30) = 3 and the greatest dimensions each tile can have is of 3 feet.
A similar problem is given at brainly.com/question/6032811
Answer:
(-4,169)
Step-by-step explanation:
11 (-4)^2 - 5(-4)+13
11(16)- 20 +13
176 -20+13
169
If you think about it, the question is asking us to find the greatest common factor, or GCF, of the two numbers, 24 and 18.
First, find all of the factors of 24.
The factors are: 1, 2, 3, 4, 6, 8, 12, 24
Next, find the factors of 18.
The factors are: 1, 2, 3, 6, 9, 18
List out all of the factors that both of the numbers have.
The factors are: 1, 2, 3, 6
Whichever is the greatest of these numbers is the GCF.
The GCF is 6, so the greatest number of groups he can make and still be able to win is 6.
Hope this helps!
= is parallel lines because they are in line with each other. Hope I helped :D
What do you need help with? it helps us to know the question!