Answer:
![2x^3\sqrt[3]{4}](https://tex.z-dn.net/?f=2x%5E3%5Csqrt%5B3%5D%7B4%7D)
Step-by-step explanation:
We have been given an expression
and we are asked to find the product of our given expression.
Using exponent rule of power to powers
we can write
as
and
.
Upon substituting these values in our expression we will get,
Using exponent rule
we will get,
![\sqrt[3]{4x^2} *2x^2\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4x%5E2%7D%20%2A2x%5E2%5Csqrt%5B3%5D%7Bx%7D)
Multiplying
by
we will get,
![\sqrt[3]{4x^3} *2x^2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4x%5E3%7D%20%2A2x%5E2)
Using exponent rule
we will get,
![x\sqrt[3]{4}*2x^2](https://tex.z-dn.net/?f=x%5Csqrt%5B3%5D%7B4%7D%2A2x%5E2)
![x*2x^2\sqrt[3]{4}](https://tex.z-dn.net/?f=x%2A2x%5E2%5Csqrt%5B3%5D%7B4%7D)
![2x^3\sqrt[3]{4}](https://tex.z-dn.net/?f=2x%5E3%5Csqrt%5B3%5D%7B4%7D)
Therefore, the simplest form of the product of our given expression will be
.