Answer:
- 5(x +1.5)^2
- 10(x +1)^2
- 1/4(x +2)^2
- 3(x +5/6)^2
Step-by-step explanation:
When your desired form is expanded, it becomes ...
a(x +b)^2 = a(x^2 +2bx +b^2) = ax^2 +2abx +ab^2
This tells you the overall factor (a) is the leading coefficient of the given trinomial. Factoring that out, you can find b as the root of the remaining constant.
a) 5x^2 +15x +11.25 = 5(x^2 +3x +2.25) = 5(x +1.5)^2
b) 10x^2 +20x +10 = 10(x^2 +2x +1) = 10(x +1)^2
c) 1/4x^2 +x +1 = 1/4(x^2 +4x +4) = 1/4(x +2)^2
d) 3x^2 +5x +25/12 = 3(x^2 +5/3x +25/36) = 3(x +5/6)^2
_____
<em>Additional comment</em>
If you know beforehand that the expressions can be factored this way, finding the two constants (a, b) is an almost trivial exercise. It gets trickier when you're trying to write a general expression in vertex form (this form with an added constant). For that, you must develop the value of b from the coefficient of the linear term inside parentheses.
I domt get what you mean by coordinate pair could you explain plseas
F (x)= (x+1)(x-1)(x^2-2x-2)
9514 1404 393
Answer:
r = 1/9
Step-by-step explanation:
First of all, solve the equation for r:
y = rx
y/x = r . . . . . . . divide by x
__
Since r is a constant, it will be the same for any corresponding pairs of x and y. It is convenient to choose both x and y as integers, as in the third table entry.
r = y/x = 5/45
r = 1/9 . . . . . . . . . reduced fraction
_____
<em>Additional comment</em>
It is not a bad idea to check to see that this works with other values of x and y. For the first line of the table, we have x = 11:
y = rx = (1/9)(11) = 11/9 = 1 2/9 . . . . matches the table value
4y^2 + 16y
You distribute the 2y into the 2y+8