Step-by-step explanation:

The binomial theorem states that for some a,b∈R and some k ∈Z+ ,
(a+b)k=∑n=0k(kn)ak−nbn.
The binomial series allows us to use the binomial theorem for instances when k is not a positive integer. The binomial series applies to a given function f(x)=(1+x)k for any k∈R with the condition that |x|<1 . It is stated as follows:
(1+x)k=∑n=0∞(kn)xn .
Note that the binomial theorem produces a finite sum and the binomial series produces an infinite sum.
9^2*4^4 is the correct answer I believe.
Answer:
Yes
Step-by-step explanation:
ΔMNL ≅ ΔQNL by ASA or AAS
by ASA
Proof:
∠ LNM = ∠LNQ =90
LN = LN {Common}
∠MLN = ∠QLN {LN bisects ∠ L}
By AAS
∠Q + ∠QLN + ∠LNQ = 180 {Angle sum property of triangle}
∠Q + 32 + 90 = 180
∠Q + 122 = 180
∠Q = 180 -122 =
∠Q = 58
∠Q = ∠M
∠MNL =∠QNL = 90
LN = LN {common side}
Given:
The two functions are:


To find:
The type of transformation from f(x) to g(x) in the problem above and including its distance moved.
Solution:
The transformation is defined as
.... (i)
Where, a is horizontal shift and b is vertical shift.
- If a>0, then the graph shifts a units left.
- If a<0, then the graph shifts a units right.
- If b>0, then the graph shifts b units up.
- If b<0, then the graph shifts b units down.
We have,


The function g(x) can be written as
...(ii)
On comparing (i) and (ii), we get

Therefore, the type of transformation is translation and the graph of f(x) shifts 2 units up to get the graph of g(x).