1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
15

Independant and dependant varables in each relatrionship

Mathematics
1 answer:
telo118 [61]3 years ago
4 0

Answer:

INDEPENDANT

Step-by-step explanation:

PLS I HOPE TTHIS HELPPPPPPPPPPPPPPPPPPPP

You might be interested in
My Christmas present to you​
katovenus [111]

Answer:

Step-by-step explanation:

if you need help let me know

8 0
2 years ago
Read 2 more answers
What is sin(sec^-1 (u))
Bogdan [553]

Answer:

i think

Step-by-step explanation:

3 0
3 years ago
T
erastovalidia [21]

Answer:

y = 2/5x + 4

Step-by-step explanation:

Slope-Intercept Form: y = mx + b

Slope:

( y1 - y2 ) / ( x1 - x2 )

( 2 - 8 ) / ( -5 - 10 )

( -6 ) / ( -15 )

2 / 5

Y-Intercept:

8 = 2/5(10) + b

8 = 4 + b

4 = b

Hopefully this helps!

Brainliest please?

8 0
2 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
A trapezoid has an area of 13.5 square inches. If the bases are 3 inches and 6 inches, what is the height of the trapezoid?
IRISSAK [1]
Its three because three divided by two times three plus equal 13.5
3 0
3 years ago
Read 2 more answers
Other questions:
  • the area of a rectangle is 56 square inches. the width of the rectangle is 7 in. What is the length?
    5·1 answer
  • An astronaut visited Mars. His weight on Earth was 180 pounds, and his weight on Mars was only 72 pounds. He removed a rock with
    15·1 answer
  • Which of the following statements about the relationship between an interior angle of a polygon and its adjacent exterior angle
    7·1 answer
  • Find the range of possible values of n.
    13·1 answer
  • A company has a profit of$1750 this week. This profit is $900 more than profit p last week. What equals p
    5·1 answer
  • Please answer in complete sentences. Fully answer all questions. A community sponsored a charity square dance where admission wa
    8·1 answer
  • X ^ 4 * y ^ 2 How many terms does this polynomial have?
    8·1 answer
  • Each year the local country club sponsors a tennis tournament. Plays starts with 128 participants. During each round, half of th
    15·1 answer
  • Help please thanks<br> yoi
    7·2 answers
  • Which side lengths form an obtuse triangle? 0 28, 96, 100 O 40, 75, 85 O 17, 18, 19 O 2, 5,8 O 4, 5, 6
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!