-c
No , he needed to apply the exponents to all factors in the product in the second step .
Answers:
The formula is [f(-1)-f(-4)]/[3]
The value of f(-1) is 3
The value of f(-4) is -3
The average rate of change is 2
==============================================
Explanation:
For the first blank, we use the formula
[ f(b) - f(a) ]/[ b - a ]
where 'a' and 'b' are the endpoints for the x interval
In this case, a = -4 and b = -1. When you plug those values into the formula above, you get...
[ f(b) - f(a) ]/[ b - a]
[ f(-1) - f(-4)]/[ -1 - (-4) ]
[ f(-1) - f(-4)]/[ -1+4 ]
[ f(-1) - f(-4)]/[ 3 ]
which is why the answer is choice C for the first blank
-------------------------------------------
To compute the value of f(-1), we draw a vertical line through -1 on the x axis. This vertical line crosses the diagonal function graph at the point (-1,3). The y value of this point is what we want. Plugging in x = -1 leads to y = 3. This is why f(-1) = 3
If you want, you can draw a horizontal line through (-1,3) and you'll see it touching 3 on the y axis.
-------------------------------------------
Follow similar steps as above to compute f(-4). Draw a vertical line through x = -4 on the x axis. Mark the point where the vertical line crosses the diagonal line. This point is (-4,-3). Optionally draw a horizontal line over til you hit the y axis and you'll find that y = -3 corresponds to x = -4
This is why f(-4) = -3
-------------------------------------------
We'll use the last three sections to compute the average rate of change. Everything combines together building up to this moment.
From the first part, we had the formula
[ f(b) - f(a) ]/[ b - a ]
[ f(-1) - f(-4)]/[ 3 ]
We can replace the "f(-1)" with 3 since we found that f(-1) = 3
Similarly, f(-4) = -3 so we can replace the "f(-4)" with -3
Doing those replacements and simplifying leads to...
[ f(-1) - f(-4)]/[ 3 ]
[ 3 - (-3)]/[ 3 ]
[ 3 + 3]/[ 3 ]
6/3
2
So the average rate of change is 2
Note: because the entire graph is a straight line, the average rate of change for any interval a < x < b is going to be equal to the slope m. In this case, the slope of the line is m = 2/1 = 2. We move up 2 units each time we move to the right 1 unit along the diagonal line.
6/962...............................................
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:
