Find the mass of C in the 2.657 g CO2:
(2.657 g CO2) / (44.01 g/mol) = 0.06037 mol CO2
Since each mole of CO2 also has 1 mole of C, this is equivalent to 0.06037 mol C.
Find the mass of H in the 1.089 g H2O:
(1.089 g H2O) / (18.02 g/mol) = 0.06043 mol H2O
Since 1 mol H2O has 2 mol H, this is equivalent to (0.06043)*2 = 0.1209 mol H.
Taking the ratio of H to C: 0.1209 / 0.06037 = 2.002 ~ 2
Therefore, the empirical formula of isobutylene is CH2.
Liquids stays the same volume but the bonds are spaced out enough that it can take the shape of whatever container it’s in.
<u>36 ml of NaOh and</u><u> 464 ml</u><u> of </u><u>HCOOH</u><u> would be enough to form 500 ml of a buffer with the same pH as the buffer made with </u><u>benzoic acid </u><u>and NaOH.</u>
What is benzoic acid found in?
- Some natural sources of benzoic acid include: Fruits: Apricots, prunes, berries, cranberries, peaches, kiwi, bananas, watermelon, pineapple, oranges.
- Spices: Cinnamon, cloves, allspice, cayenne pepper, mustard seeds, thyme, turmeric, coriander.
Calculate the amount of moles in NaOH and benzoic acid. This calculation is done by multiplying molarity by volume.
Amount of moles of NaOH -2 × 0.025 = 0.05 mol
Amount of moles of benzoic acid 2 × 0.475 = 0.095 mol
In this case, we can calculate the pH produced by the buffer of these two reagents, as follows


We must repeat this calculation, with the values shown for HCOOH and NaOH. In this case, we can calculate as follows




Now we must solve the equation above. This will be done using the following values

With these values, we can calculate the volumes of NaOH and HCOOH needed to make the buffer.
NaOH volume
( 0.5 - 0.464)L
0.036L .................... 36ml
HCOOH volume
500 - 36 = 464mL
Learn more about benzoic acid
brainly.com/question/24052816
#SPJ4
Answer:

Explanation:
Half time is period required to desintegrating the half of the initial number of atoms. Then, the total time is:

