Answer:
6/41
Step-by-step explanation:
6 + 7 + 20 + 8 = 41 so that is number of tiles he took. 6 of those were 41 so therefore, the chance is 6/41
Aaron is 4 years and Maria is 14 years old.
A = Aaron's age today
M = Maria's age today.
a. The equation based on the statement given will be:
M = A + 10
b. Maria's age based on the statement in 6 years will be:
= (A + 10) + 6
= A + 16
c. Based on the information above, the equation to solve their ages will be:
A + 16 = 2(A + 6)
A + 16 = 2A + 12
Collect like terms
2A - A = 16 - 12
A = 4
Therefore, Aaron is 4 and Maria is 14 years.
Read related link on:
brainly.com/question/22866879
The answer to this questions is letter B
Answer:


Step-by-step explanation:
Given

Solving (a):
Find k
To solve for k, we use the definition of joint probability function:

Where

Substitute values for the interval of x and y respectively
So, we have:

Isolate k

Integrate y, leave x:
![k \int\limits^2_{0} y {dx} \, [0,x/2]= 1](https://tex.z-dn.net/?f=k%20%5Cint%5Climits%5E2_%7B0%7D%20y%20%7Bdx%7D%20%5C%2C%20%5B0%2Cx%2F2%5D%3D%201)
Substitute 0 and x/2 for y


Integrate x
![k * \frac{x^2}{2*2} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B2%2A2%7D%20%5B0%2C2%5D%3D%201)
![k * \frac{x^2}{4} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B4%7D%20%5B0%2C2%5D%3D%201)
Substitute 0 and 2 for x
![k *[ \frac{2^2}{4} - \frac{0^2}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B2%5E2%7D%7B4%7D%20-%20%5Cfrac%7B0%5E2%7D%7B4%7D%20%5D%3D%201)
![k *[ \frac{4}{4} - \frac{0}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B4%7D%7B4%7D%20-%20%5Cfrac%7B0%7D%7B4%7D%20%5D%3D%201)
![k *[ 1-0 ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201-0%20%5D%3D%201)
![k *[ 1]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201%5D%3D%201)

Solving (b): 
We have:

Where 

To find
, we use:

So, we have:



Integrate x leave y
![P(x > 3y) = \int\limits^2_0 x [0,y/3]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20x%20%5B0%2Cy%2F3%5Ddy)
Substitute 0 and y/3 for x
![P(x > 3y) = \int\limits^2_0 [y/3 - 0]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20%5By%2F3%20-%200%5Ddy)

Integrate
![P(x > 3y) = \frac{y^2}{2*3} [0,2]](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B2%2A3%7D%20%5B0%2C2%5D)
![P(x > 3y) = \frac{y^2}{6} [0,2]\\](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B6%7D%20%5B0%2C2%5D%5C%5C)
Substitute 0 and 2 for y




Answer:
A sample of 997 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
In which
z is the z-score that has a p-value of
.
The margin of error is of:

A previous study indicates that the proportion of left-handed golfers is 8%.
This means that 
98% confidence level
So
, z is the value of Z that has a p-value of
, so
.
How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 2%?
This is n for which M = 0.02. So






Rounding up:
A sample of 997 is needed.