Divide by the coefficient of x.
x = 27/47
second-period class average:
55+70+450+480+170+270+95 = 1590
1590/20 = 79.5
sixth-period class average:
65+225+480+595+270+190 = 1825
1825/20 = 91.25
on average, students in the sixth period class scored higher
Seperate the questions 12+15=25 ÷ by 3×6= 18-4= the answer
Answer:
x^-5 = x to the power of negative 5
Step-by-step explanation:
Which of these is equivalent to 1 over x to the power of 5 ?
Mathematically this is expressed as
(1/x)⁵
We have a rule when it comes to expressing power
(1/a)^b = a^-b
Hence, applying this rule to our question
(1/x)⁵ = (1/x)^5
= x^-5
This is written in words as:
x to the power of negative 5