1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
3 years ago
14

As the transmission is shifted from first gear to second gear, the torque delivered by the output shaft is:

Engineering
1 answer:
yuradex [85]3 years ago
5 0

Answer: reduced

Explanation:

Lower gears deliver higher torque.

You might be interested in
A 8-core machine has 4 times the performance of a single-core machine of the same frequency. Performance is proportional to freq
tankabanditka [31]

Answer: The 8-core machine saves  87.5% of the dynamic power.

Explanation:

Let Fold = f , Vold = V , Cold = Capacitance

so

Old Dynamic power = Cold × (Vold × Vold) × f

therefore for the 8-core machine

 Fnew / Fold = 1/4

Fnew = Fold/4

we were told that Voltage decreases proportional to frequency,

so

Vnew / Vold = 1/4

Vnew = V / 4

So New Capacitance will be;

Cnew = Cold

Thus, New Dynamic power = 8 × Cnew × ( Vnew × Vnew ) ×  Fnew

= 8 × Cold × (Vold × Vold/16) × ( f/4 )

=  8 × ( Cold ) × ( Vold × Vold ) × ( f ) / 64

= (Old Dynamic Power) / 8

therefore

Old Dynamic Power / New Dynamic Power = 8

Thus, Percentage of power saved will be;

Percentage power saved = 100 × ( Old Dynamic Power - New Dynamic Power ) / Old Dynamic Power

=   100 × (8-1) / 8

= 87.5 %

Therefore The 8-core machine saves  87.5% of the dynamic power.

6 0
3 years ago
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30C by rejecting
chubhunter [2.5K]

Answer:

a) x = 0.4795

b) QL = 5.85 KW

c) COP = 2.33

d) QL_max = 12.72 KW

Explanation:

Solution:-

- Assuming the steady state flow conditions for both fluids R-134a and water.

- The thermodynamic properties remain constant for respective independent intensive properties.

- We will first evaluate the state properties of the R-134a and water.

- Compressor Inlet, ( Saturated Vapor ) - Ideal R-134a vapor cycle

              P1 = 60 KPa, Tsat = -36.5°C  

              T1 = -34°C , h1 = hg = 230.03 KJ/kg

              Qin = 450 W - surrounding heat  

- Condenser Inlet, ( Super-heated R-134a vapor ):

              P2 = 1.2 MPa , Tsat = 46.32°C  

              T2 = 65°C   , h2 = 295.16 KJ/kg

- Condenser Outlet, ( Saturation R-134a point ):

             P3 = P2 = 1.2 MPa , Tsat = 46.32°C

             T3 = 42°C   , h3 = hf = 111.23 KJ/kg

- R-134a is throttled to the pressure of P4 = compressor pressure = P1 = 60 KPa by an "isenthalpic - constant enthalpy pressure reduction" expansion valve.

- Inlet of Evaporator - ( liquid-vapor state )

             P4 = P1 = 60 KPa, hf = 3.9 KJ/kg , hfg = 223.9 KJ/kg

             h4 = h3 = 111.23 KJ/kg

- The quality ( x ) of the liquid-vapor R-134a at evaporator inlet can be determined:

             x4 = ( h4 - hf ) / hfg

             x4 = ( 111.23 - 3.9 ) / 223.9

             x4 = 0.4795      Answer ( a )        

- Water stream at a flow rate flow ( mw ) = 0.25 kg/s is used to take away heat from the R-134a.

- Condenser Inlet, ( Saturated liquid water ):

             Ti = 18°C , h = hf = 75.47 KJ/kg  

- Condenser Outlet, ( Saturated liquid water ):

             To = 26°C , h = hf = 108.94 KJ/kg

- Since the heat of R-134a was exchanged with water in the condenser. The amount of heat added to water (Qh) is equal to amount of heat lost from refrigerant R-134a.

- Apply thermodynamic balance on the R-134a refrigerant in the condenser:

             Qh = flow (mr) * [ h2 - h3 ]

Where,

flow ( mr ) : The flow rate of R-134a gas in the refrigeration cycle

             flow ( mr ) = Qh / [ h2 - h3 ]

             flow ( mr ) = 8.3675 / [ 295.16 - 111.23 ]

             flow ( mr ) = 0.0455 kg/s

- The cooling load of the refrigeration cycle ( QL ) is determined from energy balance of the cycle net work input ( Compressor work input ) - "Win" and the amount of heat lost from R-134a in condenser ( Qh ).

- Apply the thermodynamic balance for the compressor:

           

            Win = flow ( mr )*[ h2 - h1 ] - Qin

            Win = 0.0455*[ 295.16 - 230.03] KW - 0.45 KW

            Win = 2.513 KW

- The cooling load ( QL ) for the refrigeration cycle can now be calculated. Apply thermodynamic balance for the refrigeration cycle:

            QL = Qh - Win

            QL = 8.3675 - 2.513

            QL= 5.85 KW  .... Refrigeration Load, Answer ( b )

- The COP of the refrigeration cycle is calculated as the ratio of useful work and total work input required:

           

             COP = QL / Win

             COP = 5.85 / 2.513

             COP =  2.33      Answer ( c )            

- For a compressor to be working at 100% efficiency or ideal then the maximum COP for the refrigeration cycle would be:

           

             COP_max = [ TL ] / [ Th - TL ]

Where,

            TL : The absolute temperature of heat sink, refrigerated space

            TH : The absolute temperature of heat source, water inlet

                 

            COP_max = [ -30+273 ] / [ (18+273) - (-30+273) ]          

            COP_max = 5.063

- The theoretical ideal refrigeration load ( QL max ) would be:

     

           COP_max = QL_max / Win

           QL_max = Win*COP_max

           QL_max = 2.513*5.063

           QL_max = 12.72 KW     Answer ( d )

5 0
4 years ago
An electric water heater held at 120° F is kept in a 60°F room. When purchased, its insulation is equivalent to R-5. An owner pu
Trava [24]

Answer:

Total saving would be of 36.917 $\yr

Explanation:

Given Data:

T_{heater} = 120 Degree F

T_{room} = 60 Degree F

A = 30 ft^2

\eta = 100%

Heat loss before previous final value = \frac{A \Delta T}{R}

                                                              =\frac{30\times *(120-60)}{5}

                                                              = 360 Btu/hr

Heat loss after new value= \frac{30\times \times (120-60)}{15} = 120 Btu/hr

saving would be = 360 - 120 Btu/hr \times kw hr/ 3412 Btu\times 24 hr/day \times 365 day/year

                           = 616.1782 kw hr/yr

cost = 616.1782 \times 0.06$

         = 36.917 $\yr

6 0
4 years ago
A train starts from rest at station A and accelerates at 0.4 m/s^2 for 60 s. Afterwards it travels with a constant velocity for
mash [69]
<h3><u>The distance between the two stations is</u><u> </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>

\\

Explanation:

<h2>Given:</h2>

a_1 \:=\:0.4\:m/s²

t_1 \:=\:60\:s

v_{i1} \:=\:0\:m/s

a_2 \:=\:0\:m/s²

t_2 \:=\:25\:min\:=\:1500\:s

a_3 \:=\:-0.8\:m/s²

v_{f3} \:=\:0\:m/s

\\

<h2>Required:</h2>

Distance from Station A to Station B

\\

<h2>Equation:</h2>

a\:=\:\frac{v_f\:-\:v_i}{t}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v\:=\:\frac{d}{t}

\\

<h2>Solution:</h2><h3>Distance when a = 0.4 m/s²</h3>

Solve for v_{f1}

a\:=\:\frac{v_f\:-\:v_i}{t}

0.4\:m/s²\:=\:\frac{v_f\:-\:0\:m/s}{60\:s}

24\:m/s\:=\:v_f\:-\:0\:m/s

v_f\:=\:24\:m/s

\\

Solve for v_{ave1}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{0\:m/s\:+\:24\:m/s}{2}

v_{ave}\:=\:12\:m/s

\\

Solve for d_1

v\:=\:\frac{d}{t}

12\:m/s\:=\:\frac{d}{60\:s}

720\:m\:=\:d

d_1\:=\:720\:m

\\

<h3>Distance when a = 0 m/s²</h3>

v_{f1}\:=\:v_{i2}

v_{i2}\:=\:24\:m/s

\\

Solve for v_{f2}

a\:=\:\frac{v_f\:-\:v_i}{t}

0\:m/s²\:=\:\frac{v_f\:-\:24\:m/s}{1500\:s}

0\:=\:v_f\:-\:24\:m/s

v_f\:=\:24\:m/s

\\

Solve for v_{ave2}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{24\:m/s\:+\:24\:m/s}{2}

v_{ave}\:=\:24\:m/s

\\

Solve for d_2

v\:=\:\frac{d}{t}

24\:m/s\:=\:\frac{d}{1500\:s}

36,000\:m\:=\:d

d_2\:=\:36,000\:m

\\

<h3>Distance when a = -0.8 m/s²</h3>

v_{f2}\:=\:v_{i3}

v_{i3}\:=\:24\:m/s

\\

Solve for v_{f3}

a\:=\:\frac{v_f\:-\:v_i}{t}

-0.8\:m/s²\:=\:\frac{0\:-\:24\:m/s}{t}

(t)(-0.8\:m/s²)\:=\:-24\:m/s

t\:=\:\frac{-24\:m/s}{-0.8\:m/s²}

t\:=\:30\:s

\\

Solve for v_{ave3}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{24\:m/s\:+\:0\:m/s}{2}

v_{ave}\:=\:12\:m/s

\\

Solve for d_3

v\:=\:\frac{d}{t}

12\:m/s\:=\:\frac{d}{30\:s}

360\:m\:=\:d

d_3\:=\:360\:m

\\

<h3>Total Distance from Station A to Station B</h3>

d\:= \:d_1\:+\:d_2\:+\:d_3

d\:= \:720\:m\:+\:36,000\:m\:+\:360\:m

d\:= \:37,080\:m

d\:= \:37.08\:km

\\

<h2>Final Answer:</h2><h3><u>The distance between the two stations is </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>
7 0
3 years ago
What does a block tester do?
tatyana61 [14]

Answer:

Block design test. A block design test is a subtest on many IQ test batteries used as part of assessment of human intelligence. It is thought to tap spatial visualization ability and motor skill.

Explanation:

6 0
3 years ago
Other questions:
  • Consider an experiment in which the number of pumps in use at each of two seven-pump gas stations was determined. Call the two g
    10·1 answer
  • What term specifically describes small chunks of rocks and debris in space that burn up in Earth’s atmosphere?
    6·1 answer
  • Select the correct answer.<br> Which equation gives you the amount of work performed?
    14·1 answer
  • A closed rigid tank contains water initially at 10,000 kPa and 520ºC and is cooled to a final temperature of 270° C. Determine t
    9·1 answer
  • An aluminum electrical cable is 20 mm in diameter is covered by a plastic insulation (k = 1 W/m-k) of critical thickness. This w
    15·1 answer
  • 1. (1 points) What is the name of the drinking water supply well? a. VA1; b. VA24; c. VA19; d. VA40; e. VA18; 2. (1 points) What
    11·1 answer
  • Define cooling tower "range" as it applies to cooling towers.
    5·1 answer
  • Which option identifies the most likely scaling factor in the above drawing of the Mercury capsule and booster unit? 1:1,000 1:1
    14·1 answer
  • Into which of the six kingdoms should the organism be placed? Construct a response to state your claim, use evidence, and suppor
    12·1 answer
  • Optimum engine oil pressure at operating temperature and moderate engine load should be __________ ps
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!