1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bonufazy [111]
3 years ago
10

-1 1/6 divided by 2 1/3

Engineering
1 answer:
pantera1 [17]3 years ago
4 0

Answer:

-\frac{1}{2}

Explanation:

-1\frac{1}{6}:2\frac{1}{3}=\\  \\=-\frac{7}{6}:\frac{7}{3}\\  \\=-\frac{7}{6}*\frac{3}{7}\\  \\=-\frac{1}{2}

You might be interested in
2. (Problem 4.60 on main book, diameters different) Water flows steadily through a fire hose and nozzle. The hose is 35 mm diame
Viefleur [7K]

Answer:

coupling is in tension

Force = -244.81 N

Explanation:

Diameter of Hose ( D1 ) = 35 mm

Diameter of nozzle ( D2 ) = 25 mm

water gage pressure in hose = 510 kPa

stream leaving the nozzle is uniform

exit speed and pressure = 32 m/s and atmospheric

<u>Determine the force transmitted by the coupling between the nozzle and hose </u>

attached below is the remaining part of the  detailed solution

Inlet velocity ( V1 ) = V2 ( D2/D1 )^2  

= 32 ( 25 / 35 )^2

= 16.33 m/s

4 0
3 years ago
A certain piece of property is assessed at $150,000. If the tax rate is $2.50 per $100, what is the tax on this property?
stiks02 [169]

Answer:

The tax on this property is 3750 dollars

Explanation:

Given

Tax on per $100 is $2.50

Tax on every $1 is \frac{2.5}{100} = 0.025 dollars

Tax on property of value $150,000 is

150,000 * 0.025 = 3750 dollars

The tax on this property is 3750 dollars

7 0
3 years ago
What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d)
Anastasy [175]

Answer:

(b) 56%

Explanation:

the maximum thermal efficiency is possible only when power cycle is reversible in nature and when power cycle is reversible in nature the thermal efficiency depends on the temperature

here we have given T₁ (Higher temperature)= 600+273=873

lower temperature T₂=110+273=383

Efficiency of power cycle is given by =1-\frac{T2}{T1}

=1-\frac{383}{873}

=1-0.43871

=.56

=56%

5 0
3 years ago
Which of the followong parts does not rotate during starter operation? A. Commutator segments B. Armature windings c. Field wind
photoshop1234 [79]

Answer: B

Explanation: unless newer models added wingding to code inside fused computer...wingdings on a window ...not a motor

8 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
Other questions:
  • What is the difference between absolute and gage pressure?
    11·1 answer
  • The arm of the robot is extending at a constant rate = 1.5 ft/s when r = 3 ft, z = (4t2) ft, and  = (1.5 t) rad, where t is in
    14·1 answer
  • What does basic levels of competence involves??​
    13·2 answers
  • A room is cooled by circulating chilled water through a heat exchanger located in the room. The air is circulated through the he
    15·1 answer
  • A flame ionization detector, which is often used in gas chromatography, responds to a change in
    12·1 answer
  • What are some possible reasons for the sudden development of the cell theory
    14·1 answer
  • Air,in a piston cylinder assembly, is initially at 300 K and 200 kPa.It is then heated at constant pressure to 600 K. Determine
    12·2 answers
  • Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
    11·1 answer
  • A beam has been fixed to the floor by the pin at B and the roller at A as shown in figure 1 below.​
    7·1 answer
  • Not all projects that engineers work on will have human factors involved.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!