Answer:
x + y = 50 (1) and 2x + 3y = 115 (2); x = 35, y = 15
Step-by-step explanation:
Since x represents the number of 2 point shots and y represents the number of 3 point shots. If the total number of shots is 50, then x + y = 50 (1)
Also, the total 2 point shots is number of 2 point shots × points per shot = 2x and the total 3 point shots is number of 3 point shots × points per shot = 3y. Since the total number of points is 115, then
2x + 3y = 115 (2)
So, the system of equations are
x + y = 50 (1) and 2x + 3y = 115 (2)
We can solve for x and y by substituting x = 50 - y into (2)
So, 2(50 - y) + 3y = 115
100 - 2y + 3y = 115
100 + y = 115
y = 115 - 100
y = 15
So, x = 50 - y
= 50 - 15
= 35
Let w = number of weeks.
In week w,
Laura has: 720 + 30w
Taylor has: 1200 - 30w
Set the two amounts equal and solve for w, the number of weeks.
720 + 30w = 1200 - 30w
60w = 480
w = 8
They will have the same amount of money in 8 weeks.
Laura will have in 8 weeks:
720 + 30w = 720 + 30 * 8 = 720 + 240 = 960
Taylor will have in 8 weeks:
1200 - 30w = 1200 - 30 * 8 = 1200 - 240 = 960
They will both have $960 in 8 weeks.
[6, -infinity)
have a good night
Answer:

Step-by-step explanation:
As the given Augmented matrix is
![\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D9%26-2%260%26-4%26%3A8%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 1 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 2 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 3 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 4 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%26-%20%5Cfrac%7B254%7D%7B7%7D%20%26%5Cfrac%7B663%7D%7B7%7D%20%26%3A-%5Cfrac%7B1690%7D%7B7%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 5 :
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A-%5Cfrac%7B1690%7D%7B254%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 6 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26-%5Cfrac%7B71%7D%7B127%7D%20%26%3A%5Cfrac%7B176%7D%7B127%7D%20%5C%5C0%261%260%26-%5Cfrac%7B131%7D%7B254%7D%20%26%3A%5Cfrac%7B284%7D%7B127%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A%5Cfrac%7B845%7D%7B127%7D%20%5Cend%7Barray%7D%5Cright%5D)
∴ we get
