Answers:
A)
C)
Step-by-step explanation:
<u>Part 1:</u>
We have the followig equation:
![\frac{x-1}{3}-\frac{x+4}{5}=\frac{4x-1}{8}](https://tex.z-dn.net/?f=%5Cfrac%7Bx-1%7D%7B3%7D-%5Cfrac%7Bx%2B4%7D%7B5%7D%3D%5Cfrac%7B4x-1%7D%7B8%7D)
Calculating the least common multiple (l.c.m) in the denominator in the left side of the equation, being l.c.m=15:
![\frac{5(x-1)-3(x+4)}{15}=\frac{4x-1}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B5%28x-1%29-3%28x%2B4%29%7D%7B15%7D%3D%5Cfrac%7B4x-1%7D%7B8%7D)
Solving for the left part of the equation:
![\frac{2x-17}{15}=\frac{4x-1}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B2x-17%7D%7B15%7D%3D%5Cfrac%7B4x-1%7D%7B8%7D)
Operating with cross product:
![8(2x-17)=15(4x-1)](https://tex.z-dn.net/?f=8%282x-17%29%3D15%284x-1%29)
Applying the distributive property:
![16x-136=60x-15](https://tex.z-dn.net/?f=16x-136%3D60x-15)
Isolating
:
![x=-\frac{121}{44}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B121%7D%7B44%7D)
Dividing numerator and denominator by 11:
Hence, the correct option is A
<u>Part 2:</u>
We have the followig equation:
![F=\frac{G m_{1} m_{2}}{r^{2}}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7BG%20m_%7B1%7D%20m_%7B2%7D%7D%7Br%5E%7B2%7D%7D)
Operating with cross product:
![Fr^{2}=G m_{1} m_{2}](https://tex.z-dn.net/?f=Fr%5E%7B2%7D%3DG%20m_%7B1%7D%20m_%7B2%7D)
Isolating
:
Hence, the correct option is C