Answer:
Step-by-step explanation:
Parameterize the ellipse as (acos∙,bsin∙). Take points P:=(acosp,bsinp) and Q:=(acosq,bsinq) on the ellipse, with midpoint M:=(P+Q)/2.
If |PQ|=2k, then
a2(cosp−cosq)2+b2(sinp−sinq)2=4k2
The coordinates of M are
xy==a2(cosp+cosq)b2(sinp+sinq)
Lateral surface area of the prism = 920 in²
Total surface area of the prism = 1180 in²
Solution:
Length of the prism = 13 in
Width of the prism = 10 in
Height of the prism = 20 in
Lateral surface area of the prism = 2(l + w)h
= 2(13 + 10) × 20
= 2(23) × 20
= 920 in²
Lateral surface area of the prism = 920 in²
Total surface area of the prism = Lateral area + 2lw
= 920 + 2 × 13 × 10
= 920 + 260
Total surface area of the prism = 1180 in²
Hence Lateral surface area of the prism = 920 in²
Total surface area of the prism = 1180 in²
Answer:
2004-(-185)=2189
-185+469=284
Step-by-step explanation:
I double checked them
Answer: 35 degrees
Step-by-step explanation: 180-145=35