<span>Assuming the graph is y=-3(√2x)-4 and y=-3√(x-4) the transformation would be:
</span><span>The graph is compressed horizontally by a factor of 2
x=1/2x'
</span>y=-3(√2x)-4
y=-3(√x')-4 <span>
</span><span>moved left 4
x=x'-4
</span>y=-3(√x)-4
y=-3(√x'-4)-4
<span>
moved down 4
y=y'-4
</span>y=-3(√x-4)-4
y'-4=-3(√x'-4)-4
y'=-3(√x'-4)-4 +4
y'=-3(√x'-4)
Answer: C. <span>The graph is compressed horizontally by a factor of 2, moved left 4, and moved down 4.
</span>
Answer:

Step-by-step explanation:
The given function is f(x)=x.
If we stretch vertically by a factor of 4 and a translation of 4 units up then the new function becomes

But f(x)=x
We substitute to obtain the equation of g(x) as

Answer: -1/2, -0.22, 0, 12%, 0.56
Step-by-step explanation:
-1/2 is equal to -0.50, making it the number with the least value.
-0.22 is closer to 0 than -0.50, meaning it is greater then -0.50 and less than 0.
0 is between the negative and positive numbers, giving it the spot that it has.
12% is equivalent to 0.12, meaning it is more than 0, and less than 0.56, which is the greatest number.
0.56 has more value than any other number in the problem, meaning it goes last in the order.
Angle 1 is congruent to angles 3, 5, and/or 7
Angle 2 is congruent to angles 4, 6, and/or 8
Angle 5 is congruent to angles 7, 3 and/or 1
Angle 6 is congruent to angles 8, 4, and/or 2
Any of these answers could work for the blanks.
Angles 1 and 3, 2 and 4, 5 and 7, and angles 6 and 8 are congruent because they are vertical angles. They have the same vertex. Not all of these are congruent to each other if this doesn’t make sense. It’s only 1 is congruent to 3, 2 congruent to 4, etc.
Then you have your corresponding angles. These are ones like angles 2 and 6, then 1 and 5. You can also have 8 and 4, or 7 and 3 as corresponding angles
Transversal angles are different. This would be like angles 3 and 4, or 1 and 2. They are not always congruent. The only time they will be congruent is if they are both 90°. Transversal angles are essentially supplementary angles on the transversal line (the line that intersects through the set of parallel lines)
The inequality statement shows that both Jose and Sue landed on red or blue squares and hence both lost some points. The points they lost were more than the points they gained, which resulted in an overall score having a negative value for each player.
Jose had a final score of -2 and Sue had a final score of -5. This means, Sue scored less and probably lost more points as compared to Jose. There is a difference of 3 points between the scores of both players.