Answer:
They'll be able to get 34 bottles from the containers.
Step-by-step explanation:
Since the bottles are cylindrical we can calculate their volume by using the following formula:
V = base_area*h
V = \pi*(r^2)*h
r = d/2 = 4/2 = 2 inches
V = 3.14*(2^2)*5 = 3.14*4*5
V = 3.14*20 = 62.8 inches^3
In order to know how many full bottles the players will get we need to divide the total volume of the containers, which is given by the sum of the volume of each container, and divide it by the volume of each bottle. We have:
bottles = (345*pi + 345*pi)/62.8 = 690*pi/62.8 = 2,166.6/62.8 = 34.5
Since the problem wants the amount of full bottles we only take the integer part, so they will be able to get 34 bottles from the containers.
Answer:
Step-by-step explanation:
Hello!
X: number of absences per tutorial per student over the past 5 years(percentage)
X≈N(μ;σ²)
You have to construct a 90% to estimate the population mean of the percentage of absences per tutorial of the students over the past 5 years.
The formula for the CI is:
X[bar] ±
* 
⇒ The population standard deviation is unknown and since the distribution is approximate, I'll use the estimation of the standard deviation in place of the population parameter.
Number of Absences 13.9 16.4 12.3 13.2 8.4 4.4 10.3 8.8 4.8 10.9 15.9 9.7 4.5 11.5 5.7 10.8 9.7 8.2 10.3 12.2 10.6 16.2 15.2 1.7 11.7 11.9 10.0 12.4
X[bar]= 10.41
S= 3.71

[10.41±1.645*
]
[9.26; 11.56]
Using a confidence level of 90% you'd expect that the interval [9.26; 11.56]% contains the value of the population mean of the percentage of absences per tutorial of the students over the past 5 years.
I hope this helps!
Answer:
∣x+a+b∣∣x+2a+3b∣
Step-by-step explanation:
∣x+a+b∣∣x+2a+3b∣
Answer:
$2076.30
Step-by-step explanation:
In the n-th year, the rent will be ...
an = a1·r^(n-1) . . . . . . . . . r is the year on year ratio: 1+rate of increase
an = 1100·(1.095^(n-1))
Then the rent in the 8th year is ...
a8 = 1100·(1.095^(8-1)) ≈ 2076.30
The rent in the 8th year would be $2076.30.
-5m - 6 >= 24
Add six on both sides
-5m >= 30
Divide by negative five on both sides
m >= -6