1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
3 years ago
11

Please help me with this math problem.

Mathematics
1 answer:
nekit [7.7K]3 years ago
7 0

Answer:

b = 2

Step-by-step explanation:

Using the midpoint formula

(2, 1) = [ \frac{1}{2}(- 4 + 8), \frac{1}{2}(b + 0) ]

considering the y-coordinate, then

\frac{1}{2} b = 1 ( multiply both sides by 2 )

⇒ b = 2


You might be interested in
EXPERT HELP: EXPLAIN THE ANSWER AND DON'T GUESS<br><br> Tell me the mean of each brand
rosijanka [135]

Answer:

D

Step-by-step explanation:

IF you count the dots for each graph, you would see that the minimum for B is Higher than group A's maximum, Therefore, the numbers do not overlap. This means that at a simple glance you can see which company does better.

6 0
3 years ago
A statue is mounted on top of a 21 foot hill. From the base of the hill to where you are standing is 57feet and the statue subte
AleksandrR [38]

Please find the attached diagram for a better understanding of the question.

As we can see from the diagram,

RQ = 21 feet = height of the hill

PQ = 57 feet = Distance between you and the base of the hill

SR= h=height of the statue

\angle SPR=Angle subtended by the statue to where you are standing.

\angle x=\angle RPQ= which is unknown.

Let us begin solving now. The first step is to find the angle \angle x which can be found by using the following trigonometric ratio in \Delta PQR :

tan(x)=\frac{RQ}{PQ} =\frac{21}{57}

Which gives \angle x to be:

\angle x=tan^{-1}(\frac{21}{57})\approx20.22^{0}

Now, we know that\angle x and \angle SPR can be added to give us the complete angle \angle SPQ in the right triangle \Delta SPQ.

We can again use the tan trigonometric ratio in \Delta SPQ to solve for the height of the statue, h.

This can be done as:

tan(\angle SPQ)=\frac{SQ}{PQ}

tan(7.1^0+20.22^0)=\frac{SR+RQ}{PQ}

tan(27.32^0)=\frac{h+21}{57}

\therefore h+21=57tan(27.32^0)

h\approx8.45 ft

Thus, the height of the statue is approximately, 8.45 feet.

3 0
3 years ago
0.3y + y/z= y=10 and z=5
Xelga [282]

Answer:

32

Step-by-step explanation:

write the equation

0.3y + y/z=

Then you fill in what you know

0.3(10) + 10/5=

then we multiply/divide

30 + 10/5

then we continue to multiply/divide untill there is nothing to multiply/divide anymore

30+2

then we add/subtract

32

Our answer is 32

3 0
3 years ago
Solve for x <br> x^2 - 2x - 35 = 0x
olga_2 [115]

Answer:

 x = 7

 x = -5

Step-by-step explanation:

Given

x² - 2x - 35 = 0

Consider the factors of the constant term (- 35) which sum to give the coefficient of the x- term (- 2)

The factors are - 7 and + 5, since

- 7 × 5 = - 35 and - 7 + 5 = - 2, thus

(x - 7)(x + 5) = 0

Equate each factor to zero and solve for x

x + 5 = 0 ⇒ x = - 5

x - 7 = 0 ⇒ x = 7

4 0
3 years ago
DUE SOON PLZ HELP BRO
Daniel [21]
Raettttttrrrrrrrrrrrrrrrr
6 0
3 years ago
Read 2 more answers
Other questions:
  • _____ season is when the weather is not optimal and few tourists have vacation time.
    10·2 answers
  • Points A, B, C, D, and O have coordinates (0, 3), (4, 4), (4, y), (4, 0), and (0, 0), respectively. The area of ACDO is 5 times
    9·1 answer
  • Solve:<br> 4m- 4 - 8 = -2m + 12
    13·1 answer
  • Express the result scientific notation
    14·1 answer
  • How many significant figures ?<br><br> 0.002300
    7·1 answer
  • Based on the figure below, what is the value of x? (look at picture \/)<br>​
    9·1 answer
  • Apply the distributive property to create an equivalent expression.<br> 6(a + 2b + 3c) =
    13·2 answers
  • the digit at the tens place of a two—digit number is 4 times the digit at ones place if the sum of this number and the number fo
    12·1 answer
  • What is not equivalent to -12
    6·1 answer
  • Need help asappppppp
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!