Answer:
its equal
Step-by-step explanation:
The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
![\left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%269%5C%5C12%266%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dy%264y%5C%5C3y%262y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20%20)
Adding the matrices,
![\left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%2By%269%2B4y%5C%5C12%2B3y%266%2B2y%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20)
Matrix equality gives,

Solving the equations together,

We can see that the equations are not consistent.
There is no solution.
Answer:
Step-by-step explanation:
From the figure attached,
Point B has been dilated to form point B'.
B(3, 1) → B'(6, 2)
→ B'[(2 × 3), (2 × 1)]
Since rule for the dilation of a point (x, y) by a factor of k is,
B(x, y) → B'(kx, ky)
By comparing the coordinates k = 2 is the scale factor by which the point B has been dilated about the origin.
Therefore, other vertices of the quadrilateral will be,
A(-2, 3) → A'(-4, 6)
C(1, -1) → C'(2, -2)
D(-3, -2) → D'(-6, -4)
Answer:
4:5
Step-by-step explanation:
I don't see the table but since it is 4 out of every 5 stickers are purple, the ratio would be 4:5, 4/5, or 4 to 5. It doesn't really matter, because all of these mean the same thing.
Tell me if I'm wrong :)
No, she is wrong. 0.00001 has 4 zeros in front of the one and behind the decimal, making it 1/100000 or 1/10^5. For 0.001, there are 2 zeros in front, making it 1/1000 or 1/10^3. Since a number gets smaller as the denominator gets larger, and 10^5>10^3, 1/10^5<1/10^3