If x - 4 ≥ 0, then |x - 4| = x - 4, so
G(x) = F(x) ⇒ 3x + 2 = (x - 4) + 2
⇒ 3x + 2 = x - 2
⇒ 2x = -4
⇒ x = -2
Otherwise, if x - 4 < 0, then |x - 4| = -(x - 4), so
G(x) = F(x) ⇒ 3x + 2 = -(x - 4) + 2
⇒ 3x + 2 = -x + 6
⇒ 4x = 4
⇒ x = 1
However,
• when x = -2, we have
G(-2) = 3(-2) + 2 = -4
F(-2) = |-2 - 4| + 2 = 8
• when x = 1, we have
G(1) = 3(1) + 2 = 5
F(1) = |1 - 4| + 2 = 5
so only x = 1 is a solution to G(x) = F(x).
Answer:
C. 2d+3=12
Step-by-step explanation:
The answer is C (-1,-4)
I got the answer by graphing the equation and plotting each the points down to see which one lies on the graph
Answer:you would have to divide $8.00/$2.75 and it would equal $2.90
Step-by-step explanation:This may help and if it does please thank me in the comments.
<h3>
The dimensions of the given rectangular box are:</h3><h3>
L = 15.874 cm , B = 15.874 cm , H = 7.8937 cm</h3>
Step-by-step explanation:
Let us assume that the dimension of the square base = S x S
Let us assume the height of the rectangular base = H
So, the total area of the open rectangular box
= Area of the base + 4 x ( Area of the adjacent faces)
= S x S + 4 ( S x H) = S² + 4 SH ..... (1)
Also, Area of the box = S x S x H = S²H
⇒ S²H = 2000

Substituting the value of H in (1), we get:

Now, to minimize the area put :

Putting the value of S = 15.874 cm in the value of H , we get:

Hence, the dimensions of the given rectangular box are:
L = 15.874 cm
B = 15.874 cm
H = 7.8937 cm