Answer:
Heating 100 g of water from 10◦C to 50◦C
Explanation:
m₁ ΔT₁ = 2000
m₂ ΔT₂ = 300
m₃ ΔT₃ = 4000
m₄ ΔT₄ = 70
Answer:
higher frequency waves will have more energy
Explanation:
Answer:
(A) 0.2306 m
(B) 1.467 Hz
(C) 0.1152 m
Explanation:
spring constant (K) = 16.4 N/m
mass (m) = 0.193 kg
acceleration due to gravity (g) = 9.8 m/s^{2}
(A) force = Kx, where x = extension
mg = Kx
0.193 x 9.8 = 16.4x
x = 0.1153 m
now the mass actually falls two times this value before it gets to its equilibrium position ( turning point ) and oscillates about this point
therefore
2x = 0.2306 m
(B) frequency (f) = \frac{1}{2π} x 
frequency (f) = \frac{1}{2π} x 
frequency = 1.467 Hz
(C) the amplitude is the maximum position of the mass from the equilibrium position, which is half the distance the mass falls below the initial length of the spring
= \frac{0.2306}{2} = 0.1152 m
Extra innings is the answer