The fetus relies upon its mother as it develops. These are some of the things it needs:
<span>protection against knock and bumps, and temperature changes
oxygen for respiration
nutrients (food and water)
</span>
The developing fetus also needs its waste substances removing.
The fetus is protected by the uterus and the amniotic fluid, a liquid contained in a bag called the amnion.
Answer:
Efriction = 768.23 [kJ]
Explanation:
In order to solve this problem we must use the principle of energy conservation. Where it tells us that the energy of a system plus the work applied or performed by that system, will be equal to the energy in the final state. We have two states the initial at the time of the balloon jump and the final state when the parachutist lands.
We must identify the types of energy in each state, in the initial state there is only potential energy, since the reference level is in the ground, at the reference point the potential energy is zero. At the time of landing the parachutist will only have potential energy, since it reaches the reference level.
The friction force acts in the opposite direction to the movement, therefore it will have a negative sign.

where:

m = mass = 56 [kg]
h = elevation = 1400 [m]
v = velocity = 5.6 [m/s]
![(56*9.81*1400)-E_{friction}=\frac{1}{2}*56*(5.6)^{2}\\769104 -E_{friction}= 878.08 \\E_{friction}=769104-878.08\\E_{friction}=768226[J] = 768.23 [kJ]](https://tex.z-dn.net/?f=%2856%2A9.81%2A1400%29-E_%7Bfriction%7D%3D%5Cfrac%7B1%7D%7B2%7D%2A56%2A%285.6%29%5E%7B2%7D%5C%5C769104%20-E_%7Bfriction%7D%3D%20878.08%20%5C%5CE_%7Bfriction%7D%3D769104-878.08%5C%5CE_%7Bfriction%7D%3D768226%5BJ%5D%20%3D%20768.23%20%5BkJ%5D)
Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:

Answer:
We obtain the average velocity instead of the instantaneus velocity.
Explanation:
The problem with calculating speed in this way is that an average speed is being calculated and not an instantaneous speed at a given point.

To calculate the instantaneous speed, a very small space interval must be measured at a given time.
S=7400mi
t=3 min= 0.05h
v=7400mi/0.05h
v=148000mph