You will need half of the circle with radius of 15 inches.
Area of semi-circle = (<span>πr^2)/2 = 353.25 x $1.40 = $494.55 </span>
Becasue the data may be skewed right or left (not symmetrical)
that is obvious when the median lean to left or right while the maximum and minimum records are still as they are.
<span />
Answer:
(a)123 km/hr
(b)39 degrees
Step-by-step explanation:
Plane X with an average speed of 50km/hr travels for 2 hours from P (Kano Airport) to point Q in the diagram.
Distance = Speed X Time
Therefore: PQ =50km/hr X 2 hr =100 km
It moves from Point Q at 9.00 am and arrives at the airstrip A by 11.30am.
Distance, QA=50km/hr X 2.5 hr =125 km
Using alternate angles in the diagram:

(a)First, we calculate the distance traveled, PA by plane Y.
Using Cosine rule

SInce aeroplane Y leaves kano airport at 10.00am and arrives at 11.30am
Time taken =1.5 hour
Therefore:
Average Speed of Y

(b)Flight Direction of Y
Using Law of Sines
![\dfrac{p}{\sin P} =\dfrac{q}{\sin Q}\\\dfrac{125}{\sin P} =\dfrac{184.87}{\sin 110}\\123 \times \sin P=125 \times \sin 110\\\sin P=(125 \times \sin 110) \div 184.87\\P=\arcsin [(125 \times \sin 110) \div 184.87]\\P=39^\circ $ (to the nearest degree)](https://tex.z-dn.net/?f=%5Cdfrac%7Bp%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7Bq%7D%7B%5Csin%20Q%7D%5C%5C%5Cdfrac%7B125%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7B184.87%7D%7B%5Csin%20110%7D%5C%5C123%20%5Ctimes%20%5Csin%20P%3D125%20%5Ctimes%20%5Csin%20110%5C%5C%5Csin%20P%3D%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5C%5CP%3D%5Carcsin%20%5B%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5D%5C%5CP%3D39%5E%5Ccirc%20%24%20%28to%20the%20nearest%20degree%29)
The direction of flight Y to the nearest degree is 39 degrees.