Surface area of box=1200 cm²
<span>Volume of box=s²h </span>
<span>s = side of square base </span>
<span>h = height of box </span>
<span>S.A. = s² + 4sh </span>
<span>S.A. = surface area or 1200 cm², s²
= the square base, and 4sh = the four 'walls' of the box. </span>
<span>1200 = s² + 4sh </span>
<span>1200 - s² = 4sh </span>
<span>(1200 - s²)/(4s) = h </span>
<span>v(s) = s²((1200 - s²)/(4s)) </span>
<span>v(s) = s(1200 - s²)/4 . </span>
<span>v(s) = 300s - (1/4)s^3</span>
by derivating
<span>v'(s) = 300 - (3/4)s² </span>
<span>0 = 300 - (3/4)s² </span>
<span>-300 = (-3/4)s² </span>
<span>400 = s² </span>
<span>s = -20 and 20. </span>
again derivating
<span>v"(s) = -(3/2)s </span>
<span>v"(-20) = -(3/2)(-20) </span>
<span>v"(-20) = 30 </span>
<span>v"(20) = -(3/2)(20) </span>
<span>v"(20) = -30 </span>
<span>v(s) = 300s - (1/4)s^3 </span>
<span>v(s) = 300(20) - (1/4)(20)^3 </span>
<span>v(s) = 6000 - (1/4)(8000) </span>
<span>v = 6000 - 2000
v=4000</span>
Do 50 multiplied by x = 8. Solve for x.
It would give you .16 which is 16%.
Answer: $13,846.02
Step-by-step explanation:
The car cost $29,750 when it was first bought.
It will then depreciate at a rate of 12% per year. This means that the value of the car reduces by 12% per year.
To find the value of the car in the 6th year, you can use the compound interest formula:
= Value of car * ( 1 - rate) ^ no. of years
= 29,750 * ( 1 - 12%)⁶
= 13,816.021581824
= $13,846.02
Answer:

Step-by-step explanation:
h(x) + g(x) = 

The fraction form would be 4 3/100