Answer:
Mammals
Birds
Explanation:
The Organs which perform same function and looks but they are different in their structure from each other are called as analogous organs.
Organs are the structures that made up of two or more tissues organized to carry out a particular function.
An organ or bone that appears in different animals with same function is called homologous structure.
Homologous organs have similar origin n basic structure but perform different functions in different organisms. Analogous organs are different in basic structure but perform same functions.
Different animals have bones that appear very similar in form or function and seem to be related.
Examples
The arm of a human, the wing of a bird or a bat, the leg of a dog and the flipper of a dolphin or whale are homologous structures. They are different and have a different purpose, but they are similar sharing common traits.
The forelimbs of all mammals have the same basic bone structure.The structures are similar because they evolved to do the same job. For example, the wings of bats and birds.
Explanation:
<u>anaerobic process that restores NAD+ supply
</u>
<u></u>
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation.
Further Explanation:
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
There are four possible combinations of gametes for the AaBb parent. Half of the gametes get a dominant A and a dominant B allele; the other half of the gametes get a recessive a and a recessive b allele. Both parents produce 25% each of AB, Ab, aB, and ab.
Explanation: