Based on the weight and the model that is given, it should be noted that W(t) in radians will be W(t) = 0.9cos(2πt/366) + 8.2.
<h3>
How to calculate the radian.</h3>
From the information, W(t) = a cos(bt) + d. Firstly, calculate the phase shift, b. At t= 0, the dog is at maximum weight, so the cosine function is also at a maximum. The cosine function is not shifted, so b = 1.
Then calculate d. The dog's average weight is 8.2 kg, so the mid-line d = 8.2. W(t) = a cos t + 8.2. Then calculate a, the dog's maximum weight is 9.1 kg. The deviation from the average is 9.1 kg - 8.2 kg = 0.9 kg. W(t) = 0.9cost + 8.2
Lastly, calculate t. The period p = 2π/b = 2π/1 = 2π. The conversion factor is 1 da =2π/365 rad. Therefore, the function with t in radians is W(t) = 0.9cos(2πt/365) + 8.2.
Learn more about radians on:
brainly.com/question/12939121
Answer:
2221.75
Step-by-step explanation:
8887 ÷ 4 = 2221.75
Answer:
question 2 answer you wrote correct
question 3 answer is 20
Answer:
Step-by-step explanation:
You have no grounds for making a statement like that. There are a variety of reasons why you might not get immediate answers. Be patient.
I will do the second part of this question (finding the first three numbers):
a(4) = a(3)*(-3) + 2 = -148, so a(3)*(-3) = -150 and a(3) = -50
a(3) = 50
a(2) = a(3)*(-3) + 2 = 50, so -3*a(3) = 48 and a(d) = -16
a(1) = a(2)*(-3) + 2 = -16, so a(2)*(-3) = -18 and a(1) = 6
The procedure for finding a(5), a(6) and a(7) is exactly the same.
204, because each day 6 goes up, so 34 x 6 = 204. Hope this helps :)