Answer:
536.56 m/s
Explanation:
We'll begin by calculating the momentum of the Porsche. This can be obtained as follow:
Mass (m) of Porsche = 1361 kg
Velocity (v) of Porsche = 26.82 m/s
Momentum of Porsche =?
Momentum = mass × velocity
Momentum = 1361 × 26.82
Momentum of Porsche = 36502.02 Kgm/s
Finally, we shall determine the velocity you need to be running with in order to have the same momentum as the Porsche. This can be obtained as follow:
Your Mass = 68.03 kg
Your Momentum = Momentum of Porsche = 36502.02 Kgm/s
Your velocity =?
Momentum = mass × velocity
36502.02 = 68.03 × velocity
Divide both side by 68.03
Velocity = 36502.02 / 68.03
Velocity = 536.56 m/s
Thus you must be running with a speed of 536.56 m/s in order to have the same momentum as Porsche.
Answer:
The maximum speed of the mass is 1.67 m/s.
Explanation:
We have,
Mass of object is 34 g or 0.034 kg
Spring constant of the spring is 78.1 N/m
Amplitude attained by the object is 3.5 cm or 0.035 m
It is required to find the maximum speed of the object in this spring mass system. The maximum speed is given by :



Plugging all the values in above formula,

So, the maximum speed of the mass is 1.67 m/s.
I think solution because it dissolves
Using the cosine rule (a^2 = b^2 + c^2 - 2bc cos A), we can work out the displacement:
Displacement = a
b = 30
c = 50
A = 180 - 35 = 145 degrees.
a^2= 900 + 2500 -1500*-0.81915...
= 3400 + 1228.728...
= 4628.72...
a = 68.034...
= 68.0m (to 3s.f.).
To work out the angle from starting place, use another configuration of the cosine rule:

:
cos (C)=

= 3028.7.../4080
= 0.7423...
C = 42.069... degrees
= 042 bearing
Answer:
we need it to work and without it we dont have strength to do anything