1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
3 years ago
14

Social loafing is most likely to occur _____.

Physics
1 answer:
loris [4]3 years ago
5 0

Answer:

Answer is when no single person in a group is being watched.

Refer below.

Explanation:

Social loafing is most likely to occur:

when no single person in a group is being watched.

You might be interested in
Resonance occurs when an object vibrating at or near the resonant frequency of a second object to vibrate. What form of waves ar
Ivanshal [37]

Answer:

Resonance depends on objects, this may happen for example when you play guitar in a given room, you may find that for some notes the walls or some object vibrate more than for others. This is because those notes are near the frequency of resonance of the walls.

So waves involved are waves that can move or affect objects (in this case the pressure waves of the sound, and the waves that are moving the wall).

this means that the waves are mechanic waves.

Now, in electromagnetics, you also can find resonance frequencies for electromagnetic waves trapped in things called cavities, but this is a different topic.

8 0
3 years ago
NO LINKS PLEASE
Trava [24]

Answer:

2

Explanation:

6 0
2 years ago
9. A car driver brakes gently. Her car slows down front --
sleet_krkn [62]

Answer:

9) This is a case of deceleration

10)-0.8 ms-2

b) acceleration is the change in velocity with time

11)

a) 100 ms-1

b) 100 seconds

12) 10ms-1

13) more information is needed to answer the question

14) - 0.4 ms^-2

15) 0.8 ms^-2

Explanation:

The deceleration is;

v-u/t

v= final velocity

u= initial velocity

t= time taken

20-60/50 =- 40/50= -0.8 ms-2

11)

Since it starts from rest, u=0 hence

v= u + at

v= 10 ×10

v= 100 ms-1

b)

v= u + at but u=0

1000 = 10 t

t= 1000/10

t= 100 seconds

12) since the sprinter must have started from rest, u= 0

v= u + at

v= 5 × 2

v= 10ms-1

14)

v- u/t

10 - 20/ 25

10/25

=- 0.4 ms^-2

15)

a=v-u/t

From rest, u=0

8 - 0/10

a= 8/10

a= 0.8 ms^-2

7 0
3 years ago
4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% o
goblinko [34]

The question incomplete! The complete question along with answer and explanation is provided below.

Question:

Augment the rectifier circuit of Problem 4.68 with a  capacitor chosen to provide a peak-to-peak ripple voltage of  (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Problem 4.68:

A half-wave rectifier circuit with a 1-kΩ load operates from a 120-V (rms) 60-Hz household supply through  a 10-to-1 step-down transformer. It uses a silicon diode  that can be modeled to have a 0.7-V drop for any current.

Given Information:

Input voltage = 120 Vrms

10 to 1 step-down transformer

Voltage drop at diode = 0.7 V

Load resistance = R = 1 kΩ

Required Information:

 (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Answer:

Case (i)

Vavg = 15.45 V

Conduction of diode = 7.11 %

Iavg = 0.232 A

Ip = 0.449 A

Case (ii)

Vavg = 16.18 V

Conduction of diode = 2.25 %

Iavg = 0.735 A

Ip = 1.453 A

Explanation:

Voltage at the secondary side of the transformer is

Vrms = Vpri/turn ratio

Vrms = 120/10 = 12 V

The relation between rms voltage and peak voltage is

Vp = Vrms/√2

Vp = 12√2 = 16.97 V

Vd = 0.7 V

First we will calculate all the required parameters for the 10% ripple voltage and then for 1% ripple voltage.

case (i) 10% of the peak output:

(a) What average output voltage results?

Average output voltage = Vavg = Vp - Vd - 0.5Vr

Where Vp is the peak output voltage Vd is the voltage drop of diode and Vr is the ripple voltage which is given as a percentage of Vp

Vavg = Vp - Vd - 0.5Vr

Vavg = 16.97 - 0.7 - 0.5[0.1(16.97 - 0.7)]

Vavg = 15.45 V

(b) What fraction of the cycle does the diode conduct?

ω = √2Vr/Vp - Vd

ω = √2*0.1(Vp-Vd)/Vp - Vd

ω = √2*0.1(16.97-0.7)/16.97 - 0.7

ω = 0.447 rad

Conduction of diode = (ω/2π)*100

Conduction of diode = (0.447/2π)*100

Conduction of diode = 7.11 %

(c) What is the average diode current?

Average current = Iavg = Vavg/R[ 1 + π( √2(Vp - Vd)/0.1(Vp-Vd))]

Average current = Iavg = 15.45/1000[ 1 + π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Average current = Iavg = 0.232 A

(d) What is the peak diode current?

Peak current = Ip = Vavg/R[ 1 + 2π( √2(Vp - Vd)/0.1(Vp-Vd))]

Peak current = Ip = 15.45/1000[ 1 + 2π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Peak current = Ip = 0.449 A

case (ii) 1% of the peak output:

(a) What average output voltage results?

Vavg = 16.97 - 0.7 - 0.5[0.01(16.97 - 0.7)]

Vavg = 16.18 V

(b) What fraction of the cycle does the diode conduct?

ω = √2*0.01(Vp-Vd)/Vp - Vd

ω = √2*0.01(16.97-0.7)/16.97 - 0.7

ω = 0.1417 rad

Conduction of diode = (0.1417/2π)*100

Conduction of diode = 2.25 %

(c) What is the average diode current?

Average current = Iavg = 16.18/1000[ 1 + π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Average current = Iavg = 0.735 A

(d) What is the peak diode current?

Peak current = Ip = 16.18/1000[ 1 + 2π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Peak current = Ip = 1.453 A

3 0
3 years ago
Initially, a particle is moving at 5.25 m/s at an angle of 35.5° above the horizontal. Three seconds later, its velocity is 6.0
ivolga24 [154]

Answer:

 a =( -0.32 i ^ - 2,697 j ^)  m/s²

Explanation:

This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.

Break down the speeds in two moments

initial

  v₀ₓ = v₀ cos θ

  v₀ₓ = 5.25 cos 35.5

v₀ₓ = 4.27 m / s

   v_{oy} = v₀ sin θ

 v_{oy}= 5.25 sin35.5

v_{oy} = 3.05 m / s

Final

vₓ = 6.03 cos (-56.7)

vₓ = 3.31 m / s

v_{y} = v₀ sin θ

v_{y} = 6.03 sin (-56.7)

v_{y} = -5.04 m / s

Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order

    a = (v_{f} - v₀) /t

    aₓ = (3.31 -4.27)/3

    aₓ = -0.32 m/s²

    a_{y} = (-5.04-3.05)/3

   a_{y} =  -2.697 m/s²

6 0
3 years ago
Other questions:
  • If the 50.0 kg boy were in a spacecraft 5r from the center of the earth, what would his weight be? (use the 50.0 kg boy for sign
    7·2 answers
  • List of priceless your bodies from largest to smallest in terms of their distance from earth
    12·1 answer
  • What is the net force on a 2-kg skateboard accelerating at a rate of 2 m/s2?
    6·1 answer
  • If you increase the resistance in a series circuit, ________________
    5·1 answer
  • A stone is launched from the ground, at a 70° angle, with an initial velocity of 120 m/s.
    10·2 answers
  • What is the displacement of the runner, whose velocity versus time graph is shown in the Figure, in the first 15.5 s?
    10·1 answer
  • Air resistance is a special kind of frictional force that acts on objects as they travel through air. Identify the situation whe
    6·1 answer
  • Which receptor is responsible for reporting light pressure and cold?
    10·1 answer
  • Planet with the most extreme temperature range
    13·1 answer
  • For the ride to be comfortable, the magnitude of acceleration must not exceed 32 m/s2. What is the fastest constant speed that a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!