ANSWER
![\boxed {( \frac{1}{2} , 1)}](https://tex.z-dn.net/?f=%20%5Cboxed%20%7B%28%20%5Cfrac%7B1%7D%7B2%7D%20%2C%201%29%7D)
EXPLANATION
The given parallelogram has vertices,
L(0,-3), M(-2,1), N(1,5), O(3,1).
The diagonals of the parallelogram bisect each other.
From the diagram, we can see that, the diagonals have coordinates L(0,-3),N(1,5)
and
M(-2,1),O(3,1).
The midpoint of any of the diagonals will give us the coordinates of intersection of the diagonals.
Recall the midpoint formula,
![(\frac{x_1+x_2}{2}, \frac{y_2+y_1}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%2C%20%5Cfrac%7By_2%2By_1%7D%7B2%7D%29)
Using L(0,-3),N(1,5) gives,
![(\frac{0+1}{2}, \frac{ - 3+5}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7B0%2B1%7D%7B2%7D%2C%20%5Cfrac%7B%20-%203%2B5%7D%7B2%7D%29)
![(\frac{1}{2}, \frac{ 2}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%2C%20%5Cfrac%7B%202%7D%7B2%7D%29)
![(\frac{1}{2}, 1)](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%2C%201%29)
Or we could have also used,M(-2,1),O(3,1) to get,
![(\frac{-2+3}{2}, \frac{ 1+1}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7B-2%2B3%7D%7B2%7D%2C%20%5Cfrac%7B%201%2B1%7D%7B2%7D%29)
![(\frac{ 1}{2}, \frac{ 2}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7B%201%7D%7B2%7D%2C%20%5Cfrac%7B%202%7D%7B2%7D%29)
![(\frac{ 1}{2}, 1)](https://tex.z-dn.net/?f=%28%5Cfrac%7B%201%7D%7B2%7D%2C%201%29)
The correct answer is C