Let one acute angle be X and one be Y
X+Y=90 -------Eq.1
2X+12=Y
2X-Y=-12------Eq.2
solving eq 1&2 we get,
3x=78
∴X=26
substituting value X in equation.1
X+Y=90
Y=90-26
∴Y=64
⇒answer:- X=26°
Y=64°
![\bf -7x-2y=4\implies -2y=7x+4\implies y=\cfrac{7x+4}{-2}\implies y=\cfrac{7x}{-2}+\cfrac{4}{-2} \\\\\\ y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{7}{2}} x-2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20-7x-2y%3D4%5Cimplies%20-2y%3D7x%2B4%5Cimplies%20y%3D%5Ccfrac%7B7x%2B4%7D%7B-2%7D%5Cimplies%20y%3D%5Ccfrac%7B7x%7D%7B-2%7D%2B%5Ccfrac%7B4%7D%7B-2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B7%7D%7B2%7D%7D%20x-2%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, what's the slope of a line parallel to that one above? well, parallel lines have exactly the same slope.
Answer:
-2/9
Step-by-step explanation:
Answer:
y = 6x + 4
Step-by-step explanation:
We know the equation is linear. First, use two points to find the slope of the line.
m = (y₂ − y₁) / (x₂ − x₁)
m = (10 − 4) / (1 − 0)
m = 6
The y-intercept is 4. So the equation of the line is:
y = mx + b
y = 6x + 4