Add two like terms: 16x+(-9x)=7x
Add 15 to both sides: 7x=28
Divide 7 on both sides: x=4
Answer:
Given: △ABC, m∠B=90° AB=12, BC=16, BK ⊥ AC . Find: AC and BK.
Given: △ABC, m∠B=90°
Find: AC and BK.
Short leg 90 degrees Long leg Hypotenuse
AB=12 90 BC=16 AC= ?
AK = ? 90 BK = ? AB=12
AC = SQRT (AB*AB + BC*BC) = 20 [right triangle; Pythagorean Theorem]
Similar triangles:[Note: In diagram, share two angles. Therefore share three angles]
BK / 16 = AB / AC
BK / 16 = 12 / 20
BK = (3/5)16
BK = 48/5
another answer let see this
AB^2+BC^2=AC^2
12^2+16^2=AC^2
144+256=AC^2
400=AC^2
20=AC
# be careful#
Answer:
82
Step-by-step explanation:
m = 4
8m = 4 x 8 = 32
n = 10
5n = 5 x 10 = 50
32 + 50 = 82
Answer:
25.6 units
Step-by-step explanation:
From the figure we can infer that our triangle has vertices A = (-5, 4), B = (1, 4), and C = (3, -4).
First thing we are doing is find the lengths of AB, BC, and AC using the distance formula:

where
are the coordinates of the first point
are the coordinates of the second point
- For AB:
![d=\sqrt{[1-(-5)]^{2}+(4-4)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B1-%28-5%29%5D%5E%7B2%7D%2B%284-4%29%5E2%7D)



- For BC:





- For AC:
![d=\sqrt{[3-(-5)]^{2} +(-4-4)^{2}}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%5B3-%28-5%29%5D%5E%7B2%7D%20%2B%28-4-4%29%5E%7B2%7D%7D)





Next, now that we have our lengths, we can add them to find the perimeter of our triangle:




We can conclude that the perimeter of the triangle shown in the figure is 25.6 units.
The 16 ounce is the best size