Answer: 2,480 grams of sand
Step-by-step explanation:
There are 31 days in July.
Minh sweeps up 80 grams every day in July so at the end of July, Minh should have:
= Number of days * Sand per day
= 31 * 80
= 2,480 grams of sand
Use absolute value. If both signs are negative you will get a negative number. if both are positive you get positive. if the signs are different, subtract the smaller absolute value from the larger absolute value.
Answer:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D)
When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D)
Plugging in <em>x</em> = 0 again, we would get:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D)
Substitute in <em>x</em> = 0 once more:
![\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Answer:
n = 2
Step-by-step explanation:
1.2n - 1.5 = 0.45n
collect like terms
1.2n - 0.45n = 1.5
0.75n = 1.5
divide both side by 0.75
0.75n/0.75 = 1.5/0.75
n =2
Answer:
The domain of a function is the set of all possible inputs for the function. For example, the domain of f(x)=x² is all real numbers, and the domain of g(x)=1/x is all real numbers except for x=0. We can also define special functions whose domains are more limited.
The range is the difference between the largest and smallest numbers. The mid range is the average of the largest and smallest number.
Hope this helps!