No. Four times five is twenty, so if Andrea has five five dollar bills, she can afford the tennis shoes. <span />
What are the x values of the table?
well, we know it's a rectangle, so that means the sides JK = IL and JI = KL, so
![\stackrel{JK}{3x+21}~~ = ~~\stackrel{IL}{6y}\implies 3(x+7)=6y\implies x+7=\cfrac{6y}{3} \\\\\\ x+7=2y\implies \boxed{x=2y-7} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{JI}{6y-6}~~ = ~~\stackrel{KL}{2x+20}\implies 6(y-1)=2(x+10)\implies \cfrac{6(y-1)}{2}=x+10 \\\\\\ 3(y-1)=x+10\implies 3y-3=x+10\implies \stackrel{\textit{substituting from the 1st equation}}{3y-3=(2y-7)+10} \\\\\\ 3y-3=2y+3\implies y-3=3\implies \blacksquare~~ y=6 ~~\blacksquare ~\hfill \blacksquare~~ \stackrel{2(6)~~ - ~~7}{x=5} ~~\blacksquare](https://tex.z-dn.net/?f=%5Cstackrel%7BJK%7D%7B3x%2B21%7D~~%20%3D%20~~%5Cstackrel%7BIL%7D%7B6y%7D%5Cimplies%203%28x%2B7%29%3D6y%5Cimplies%20x%2B7%3D%5Ccfrac%7B6y%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20x%2B7%3D2y%5Cimplies%20%5Cboxed%7Bx%3D2y-7%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BJI%7D%7B6y-6%7D~~%20%3D%20~~%5Cstackrel%7BKL%7D%7B2x%2B20%7D%5Cimplies%206%28y-1%29%3D2%28x%2B10%29%5Cimplies%20%5Ccfrac%7B6%28y-1%29%7D%7B2%7D%3Dx%2B10%20%5C%5C%5C%5C%5C%5C%203%28y-1%29%3Dx%2B10%5Cimplies%203y-3%3Dx%2B10%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20from%20the%201st%20equation%7D%7D%7B3y-3%3D%282y-7%29%2B10%7D%20%5C%5C%5C%5C%5C%5C%203y-3%3D2y%2B3%5Cimplies%20y-3%3D3%5Cimplies%20%5Cblacksquare~~%20y%3D6%20~~%5Cblacksquare%20~%5Chfill%20%5Cblacksquare~~%20%5Cstackrel%7B2%286%29~~%20-%20~~7%7D%7Bx%3D5%7D%20~~%5Cblacksquare)
Answer:
If every line parallel to two lines intersects both regions in line segments of equal length, then the two regions have equal areas. In the case of your problem, every line parallel to the bases of the two parallelograms will intersect them in lines segments, each with a width of ℓ.