1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
9

Problem Solving

Mathematics
1 answer:
Misha Larkins [42]3 years ago
5 0
No. Four times five is twenty, so if Andrea has five five dollar bills, she can afford the tennis shoes. <span />
You might be interested in
I need the perimeter and area ​
kirza4 [7]

Answer:

P: 32

A: 63

Step-by-step explanation:

I hope that thats right..

6 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
HELLPPP PLSSS<br><br>100÷10+3-100+ (6+ 19)+ 3 × -5 -19+100​
Ksivusya [100]

Answer:

4

Step-by-step explanation:

I used a Calculater

3 0
3 years ago
Which are perfect squares? Check all that apply.
den301095 [7]
36, 16, 81, and 64 are all of your perfect squares.

If you need me to explain, just let me know! :)
6 0
3 years ago
Read 2 more answers
Temperature transducers of a certain type are shipped in batches of 50. A sample of 58 batches was selected, and the number of t
andrew11 [14]

Answer:

a) X        Freq.         Rel Freq.

__________________________

0           7              (7/58) = 0.121

1            10            (10/58)=0.172

2           13            (13/58) =0.224

3           14            (14/58)=0.241

4           6              (6/58)=0.103

5           3              (3/58)=0.052

6           3              (3/58)=0.052

7            1              (1/58) =0.017

8            1              (1/58)=0.017

_________________________

Total     58                 1.00

b) \frac{7+10+13+14+6}{58}= \frac{50}{58}=0.862

Step-by-step explanation:

Assuming this question: Temperature transducers of a certain type are shipped in batches of 50. A sample of 60 batches was selected, and the number of transducers in each batch not conforming to design specifications was determined, resulting in the following data:

2,1,2,4,0,1,3,2,0,5,3,3,1,3,2,4,7,0,2,3,

0,4,2,1,3,1,1,3,4,2,3,2,2,8,4,5,1,3,1,

5,0,2,3,2,1,0,6,4,2,1,6,0,3,3,3,6,2,3

(a) Determine frequencies and relative frequencies for the observed values of x = number of nonconforming transducers in a batch. (Round your relative frequencies to three decimal places.)

For this case first we order the dataset on increasing way and we got:

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

2 2 2 2  2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3  3 3

4 4 4 4 4 4

5 5 5

6 6 6

7

8

And we can construct the following table:

X        Freq.         Rel Freq.

__________________________

0           7              (7/58) = 0.121

1            10            (10/58)=0.172

2           13            (13/58) =0.224

3           14            (14/58)=0.241

4           6              (6/58)=0.103

5           3              (3/58)=0.052

6           3              (3/58)=0.052

7            1              (1/58) =0.017

8            1              (1/58)=0.017

_________________________

Total     58                 1.00

(b) What proportion of batches in the sample have at most four nonconforming transducers? (Round your answer to three decimal places.)

For this case this proportion would be:

\frac{7+10+13+14+6}{58}= \frac{50}{58}=0.862

4 0
3 years ago
Other questions:
  • Lani is making a cake in the shape of a cone. To make the cake, she uses a cone shape mold. The mold has a diameter of 10 inches
    6·2 answers
  • Line g is on plane s. True or false?
    14·1 answer
  • What is the volume of a right circular cylinder with a base diameter of 6 m and a height of 5 m? express you answer using pi
    11·1 answer
  • A recipe calls for 4 L of water. Arlene wants to make 0.3 more servings than the recipe makes.
    9·1 answer
  • If the area of a parallelogram is<br> 120 ft.^2 and the base is 15 ft.,<br> what is the height?
    6·2 answers
  • Joses his yearly wages were $50 more than marks, so he earned 16,815.43. Yet he said his taxes are the same as marks. Is he righ
    7·1 answer
  • Will give brainliest
    9·1 answer
  • What is the value of (x)​
    12·2 answers
  • Why is c speed of light in albert einseins eqation e=mc squared
    12·2 answers
  • Which expressions are equivalent when m = 1 and m = 4? 5 m minus 3 and 2 m 5 m 3 m 4 and m 4 2 m 2 m 7 and 3 m minus 3 m 5 m 3 a
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!