To make a square for x²+bx=c, add(

)²on both side
in this case, b is-3/4, half of b is -3/8, and (-3/8)² is 9/64, so you add 9/64 to both side.
Answer:
3/4
Step-by-step explanation:
I'm not for sure but it won't hurt to try it.
Answer:
0.2611 = 26.11% probability that exactly 2 calculators are defective.
Step-by-step explanation:
For each calculator, there are only two possible outcomes. Either it is defective, or it is not. The probability of a calculator being defective is independent of any other calculator, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.
And p is the probability of X happening.
5% of calculators coming out of the production lines have a defect.
This means that 
Fifty calculators are randomly selected from the production line and tested for defects.
This means that 
What is the probability that exactly 2 calculators are defective?
This is P(X = 2). So


0.2611 = 26.11% probability that exactly 2 calculators are defective.
<u>Answer:</u>
(0.5, -0.5)
<u>Step-by-step explanation:</u>
We are given a line segment on the graph with two known points (ending points) and we are to find its mid point.
We know the formula for the mid point:

Substituting the coordinates of the given points in the above formula:
Mid point =
= (0.5, -0.5)