Answer:
Let x be the perimeter of square.
Let y be the perimeter of equilateral triangle.
As both the shapes are made from a single wire, we can say that-
or ![x= 6-y](https://tex.z-dn.net/?f=x%3D%206-y)
The length of the side of square is ![\frac{x}{4}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B4%7D)
The length of the side of triangle is ![\frac{y}{3}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7B3%7D)
We have to find the area.
Area of square =
=
= ![\frac{x^{2}}{16}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B16%7D)
Area of triangle = ![a^{2} \frac{\sqrt{3} }{4}](https://tex.z-dn.net/?f=a%5E%7B2%7D%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B4%7D)
= ![(\frac{y}{3} )^{2} \times\frac{\sqrt{3} }{4}](https://tex.z-dn.net/?f=%28%5Cfrac%7By%7D%7B3%7D%20%29%5E%7B2%7D%20%5Ctimes%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B4%7D)
= ![\frac{y^{2} }{9}\times \frac{\sqrt{3} }{4}](https://tex.z-dn.net/?f=%5Cfrac%7By%5E%7B2%7D%20%7D%7B9%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B4%7D)
Now differentiating the function to maximize the total area-
A = ![\frac{x^{2}}{16}+(\frac{y^{2} }{9} \times \frac{\sqrt{3} }{4})](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B16%7D%2B%28%5Cfrac%7By%5E%7B2%7D%20%7D%7B9%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B4%7D%29)
Substituting x=6-y
![\frac{(6-y)^{2}}{16}+(\frac{y^{2} }{9} \times \frac{\sqrt{3} }{4})](https://tex.z-dn.net/?f=%5Cfrac%7B%286-y%29%5E%7B2%7D%7D%7B16%7D%2B%28%5Cfrac%7By%5E%7B2%7D%20%7D%7B9%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B4%7D%29)
Differentiating the function with respect to y, we get
A(y) = ![\frac{-(6-y)}{8}+\frac{y}{9} \times \frac{\sqrt{3} }{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-%286-y%29%7D%7B8%7D%2B%5Cfrac%7By%7D%7B9%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D)
Now equating y to 0, we get
y = ![\frac{54}{9+4\sqrt{3} }](https://tex.z-dn.net/?f=%5Cfrac%7B54%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)
The function reaches the minimum at y = ![\frac{54}{9+4\sqrt{3} }](https://tex.z-dn.net/?f=%5Cfrac%7B54%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)
We can find the maximum area at x=0 and x=6
= ![\frac{9}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B4%7D)
= ![\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D)
Therefore, you should use x = 0m or x = 6m for square to get the total area to be maximum.
Now we can evaluate for x
We know x = 6-y
x = ![6-\frac{54}{9+4\sqrt{3} }](https://tex.z-dn.net/?f=6-%5Cfrac%7B54%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)
= ![\frac{24\sqrt{3} }{9+4\sqrt{3} }](https://tex.z-dn.net/?f=%5Cfrac%7B24%5Csqrt%7B3%7D%20%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)
Therefore, the lengths of x and y can be used to minimize the total area.
x=![\frac{24\sqrt{3} }{9+4\sqrt{3} }](https://tex.z-dn.net/?f=%5Cfrac%7B24%5Csqrt%7B3%7D%20%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)
y=![\frac{54}{9+4\sqrt{3} }](https://tex.z-dn.net/?f=%5Cfrac%7B54%7D%7B9%2B4%5Csqrt%7B3%7D%20%7D)