Answer:
Step-by-step explanation:
Slope of line A = ![\frac{\text{Rise}}{\text{Run}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7BRise%7D%7D%7B%5Ctext%7BRun%7D%7D)
= ![\frac{9}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B3%7D)
= 3
Slope of line B = ![\frac{9}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B6%7D)
= ![\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D)
Slope of line C = ![\frac{6}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B6%7D%7B8%7D)
= ![\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D)
5). Slope of the hypotenuse of the right triangle = ![\frac{\text{Rise}}{\text{Run}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7BRise%7D%7D%7B%5Ctext%7BRun%7D%7D)
= ![\frac{90}{120}](https://tex.z-dn.net/?f=%5Cfrac%7B90%7D%7B120%7D)
= ![\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D)
Since slopes of line C and the hypotenuse are same, right triangle may lie on line C.
6). Slope of the hypotenuse = ![\frac{30}{10}](https://tex.z-dn.net/?f=%5Cfrac%7B30%7D%7B10%7D)
= 3
Therefore, this triangle may lie on the line A.
7). Slope of hypotenuse = ![\frac{18}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B18%7D%7B24%7D)
= ![\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D)
Given triangle may lie on the line C.
8). Slope of hypotenuse = ![\frac{21}{14}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B14%7D)
= ![\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D)
Given triangle may lie on the line B.
9). Slope of hypotenuse = ![\frac{36}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B36%7D%7B24%7D)
= ![\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D)
Given triangle may lie on the line B.
10). Slope of hypotenuse = ![\frac{48}{16}](https://tex.z-dn.net/?f=%5Cfrac%7B48%7D%7B16%7D)
= 3
Given triangle may lie on the line A.
If you add them together you will get 11g
10/6 = 1 2/3
This is because 5 + 5 =10/6
Divide 19 by six.
This gives you 1 2/3
I am pretty confident its 1.0
The answers you should drag are 3 and 4