It will take exactly 4 years for these trees to be the same height
Step-by-step explanation:
A gardener is planting two types of trees:
- Type A is 3 feet tall and grows at a rate of 7 inches per year
- Type B is 5 feet tall and grows at a rate of 1 inches per year
We need to find in how many years it will take for these trees to be the
same height
Assume that it will take x years for these trees to be the same height
The height of a tree = initial height + rate of grow × number of years
Type A:
∵ The initial height = 3 feet
∵ 1 foot = 12 inches
∴ The initial height = 3 × 12 = 36 inches
∵ The rate of grows = 7 inches per year
∵ The number of year = x
∴
= 36 + (7) x
∴
= 36 + 7 x
Type B:
∵ The initial height = 5 feet
∴ The initial height = 5 × 12 = 60 inches
∵ The rate of grows = 1 inches per year
∵ The number of year = x
∴
= 60 + (1) x
∴
= 60 + x
Equate
and 
∴ 36 + 7 x = 60 + x
- Subtract x from both sides
∴ 36 + 6 x = 60
- Subtract 36 from both sides
∴ 6 x = 24
- Divide both sides by 6
∴ x = 4
∴ The two trees will be in the same height in 4 years
It will take exactly 4 years for these trees to be the same height
Learn more:
You can learn more about the rate in brainly.com/question/10712420
#LearnwithBrainly
We have the formula (sin x)^2 + (cos x)^2 = 1;
Then, sin α =

cos β =

We apply the formula sin ( α + β ) = sin α x cos β + sin β x cos α = (3/5)x(4/5) + (4/5)x(3/5) = 12/25 + 12/25 = 24/25;
Slope = (9-3)/(5-2) = 6/3 = 2
answer
<span>A) 2 </span>
Answer:
The Height of the building would be 20 feet.
Step-by-step explanation:
1.) 1/8 = 2.5/X
2.) Answer: 20 Feet
3.) Cross Multiply
- 1 inch is to 8 feet as 2.5 inches is to 20 feet.