(6,-2) are coordinates to Naya’s house
So we have
h=hits
m=miss
h+m=10
gain 5 for every hit and lose 3 for every miss
so 5 times number of hit=points from hit
-3 times number of miss=points deducted from miss
add
5h-3m=18
so we have the equations
h+m=10
5h-3m=18
multiply first equation by 3
3h+3m=30
add to first equatio
3h+3m=30
<u>5h-3m=18 +</u>
8h+0m=48
8h=48
divide by 8
h=6
subsitute
h+m=10
6+m=10
subtract 6
m=4
6 hits
4 miss
<u />
Answer:Given:
P(A)=1/400
P(B|A)=9/10
P(B|~A)=1/10
By the law of complements,
P(~A)=1-P(A)=399/400
By the law of total probability,
P(B)=P(B|A)*P(A)+P(B|A)*P(~A)
=(9/10)*(1/400)+(1/10)*(399/400)
=51/500
Note: get used to working in fraction when doing probability.
(a) Find P(A|B):
By Baye's Theorem,
P(A|B)
=P(B|A)*P(A)/P(B)
=(9/10)*(1/400)/(51/500)
=3/136
(b) Find P(~A|~B)
We know that
P(~A)=1-P(A)=399/400
P(~B)=1-P(B)=133/136
P(A∩B)
=P(B|A)*P(A) [def. of cond. prob.]
=9/10*(1/400)
=9/4000
P(A∪B)
=P(A)+P(B)-P(A∩B)
=1/400+51/500-9/4000
=409/4000
P(~A|~B)
=P(~A∩~B)/P(~B)
=P(~A∪B)/P(~B)
=(1-P(A∪B)/(1-P(B)) [ law of complements ]
=(3591/4000) ÷ (449/500)
=3591/3592
The results can be easily verified using a contingency table for a random sample of 4000 persons (assuming outcomes correspond exactly to probability):
===....B...~B...TOT
..A . 9 . . 1 . . 10
.~A .399 .3591 . 3990
Tot .408 .3592 . 4000
So P(A|B)=9/408=3/136
P(~A|~B)=3591/3592
As before.
Step-by-step explanation: its were the answer is
Answer:

Step-by-step explanation:
Since interest is compounded semi-annually (half a year or 6 months), in a spawn of 2 years, the interest will have been compounded 4 times. As given in the problem, each time the interest is compounded, the new balance will be 107% or 1.07 times the amount of the old balance.
Therefore, we can set up the following equation to find the new balance after 2 years:
