Answer:
49145 years
Step-by-step explanation:
In a certain country the life expectancy for women in 1990 was 45 and in 2000 it was 85?years.
Assuming that life expectancy between 2000 and 2100 increases by the same percentage as it did between 1900 and 2000,what will life expectancy be for women in 2100?
In 10 years, the expectancy increased by 85/45 = 17/9
between 2000 and 2100, it will increas by 10 time 10 years, so expected expectancy is
years
There are several ways you can solve this problem if you're trying to solve for m and n. You can substitute, or systems of equations. However, I'm going to use substitution:
2m + n = 0 => n = -2m
We can input that in for the other equation:
m + 2n = 3 now becomes: m + 2(-2m) = 3
Now we can solve:
m + 2(−2m) = 3
m + −4m = 3
(m + −4m) = 3 (Combine Like Terms)
−3m=3
m = -1
Now we can input that value in to solve for n:
We said that n = -2m, and m = -1, so n = -2(-1):Answer:
n = 2
Your final answer is m = -1, and n = 2, which can also be written as (m,n) = (-1,2)
----------------------
However, if you were solving for m+n:
You would add the two equations!:
2m + n = 0
m + 2n = 3
----------
3m + 3n = 3
Now, you can take 3 common:
3(m+n) = 3
m + n = 1
Your final answer for what m + n equals 1!
Answer:
The probability of getting an a in both courses is 1.27
Step-by-step explanation:
Probability of getting A in Math, P(M) = 0.6
5
Probability of getting A in Science, P(S) = 0.62
Required probability of getting A in both courses, P(M and S)
= P(M) + P(S)
= 0.65 + 0.62
= 1.27
Well when u divide 246÷3=82 but since i have to use rectangular models.........