1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
14

Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit i

f the degree of P is less than the degree of Q. 0 (b) Find the limit if the degree of P is greater than the degree of Q.
Mathematics
1 answer:
jenyasd209 [6]3 years ago
3 0

Answer:

If the limit that you want to find is \lim_{x\to \infty}\dfrac{P(x)}{Q(x)} then you can use the following proof.

Step-by-step explanation:

Let P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} and Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0} be the given polinomials. Then

\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}

Observe that

\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}

and

\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}

Then

\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}

You might be interested in
How much will the guitar be worth in 10 years?
Contact [7]

Answer:

$44487

Step-by-step explanation:

If you plug in 10 for t, you are left with the following equation:

V=12000(1.14)^{10}=12000\cdot 3.7072\approx 44487. Hope this helps!

8 0
3 years ago
Read 2 more answers
By rounding to 1 significant figure, estimate the value of 48.7 x 61.2<br> 11.3
11111nata11111 [884]

Answer : 263

Rounded (1 s.f ) = 300

7 0
3 years ago
Type your answer and then click or tap Done.
masya89 [10]

Answer:

See below

Step-by-step explanation:

x(x-2y)-(y-x)2  

Final result :

-y2

Step by step solution :

Step  1  :

Equation at the end of step  1  :

x • (x - 2y) -  (y - x)2

Step  2  :

2.1     Evaluate :  (y-x)2   =    y2-2xy+x2  

Final result :

-y2

7 0
2 years ago
Jenny is trimming the edge of pillows with lace. Each pillow requires 15 inches of lace. She has one piece of lace that is 3 fee
Anna71 [15]

Answer:

I think Jenny will be able to do 9 pillows with the lace trim.

4 0
3 years ago
I need the written form for 293,805
yan [13]
Two hundred ninety three thousand eight hundred and five
5 0
4 years ago
Other questions:
  • The function f(x) = g(x), where f(x) = 2x – 5 and g(x) = x2 – 6.
    9·1 answer
  • What is 4.3(v+2.5)=8.11+4v
    10·1 answer
  • Round 9493.77378844 to the nearest tenth
    14·1 answer
  • Find the real solutions
    12·2 answers
  • When csc(Theta)sin(Theta) is simplified, what is the result? StartFraction 1 Over cosecant squared EndFraction StartFraction 1 O
    7·1 answer
  • With or without tiles simplify and solve each equation below for x. record your work. a.3x-7=2
    11·1 answer
  • 2 quarts in a cup<br> ddxxxxddddxvv
    6·1 answer
  • Katie is buying souvenir gifts for her big family back home. She wants to buy everyone either a key chain or a magnet. The magne
    9·2 answers
  • Find the area of triangle ABC and the area of XYZ. AABC - AXYZ.
    14·1 answer
  • She put out two more recovery tests smh
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!